This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125108 #4 Sep 25 2020 07:31:04 %S A125108 1,2,4,10,26,72,202,580 %N A125108 Column sums of a Gaussian polynomial-shaped array. Row sums generate the Eulerian array A008292. %C A125108 Column sums of the Gaussian polynomial template count numeric partitions. Row sums of the Gaussian polynomial template generate Pascal's triangle. A105552 has the same shape as the template and counts compositions. Row sums of the Eulerian array counts permutations of n object. %e A125108 The column sums begin 1 2 4 10 26 72 202 580 ... because the structure of the Array begin as follows: %e A125108 1.................................................................. %e A125108 ......1............................................................ %e A125108 ......1............................................................ %e A125108 ............1...................................................... %e A125108 ............2......2............................................... %e A125108 ............1...................................................... %e A125108 ..................1................................................ %e A125108 ..................3......5......3.................................. %e A125108 ..................3......5......3.................................. %e A125108 ..................1................................................ %e A125108 ............................1...................................... %e A125108 ............................4.......9.......9.......4.............. %e A125108 ............................6.......16......22......16.......6..... %e A125108 ............................4.......9.......9.......4.............. %e A125108 ............................1...................................... %e A125108 etc. %Y A125108 Cf. A000041, A000079, A000142, A007318, A008292, A047970, A060351, A105552. %K A125108 nonn,more %O A125108 1,2 %A A125108 _Alford Arnold_, Dec 25 2006