cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125142 a(n) = smallest k such that SEPSigma^{k}(n)=1, or -1 if no such k exists. Here SEPSigma(m) = (-1)^(Sum_i r_i)*Sum_{d|m} (-1)^(Sum_j Max(r_j))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^r_i where m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.

Table of values

n a(n)
1 0
2 1
3 2
4 4
5 5
6 2
7 3
8 6
9 6
10 5
11 6
12 4
13 5
14 3
15 7
16 9
17 10
18 6
19 7
20 7
21 5
22 6
23 7
24 6
25 9
26 5
27 8
28 6
29 7
30 7
31 8
32 11
33 8
34 10
35 7
36 -1
37 -1
38 7
39 7
40 -1
41 -1
42 5
43 6
44 8
45 -1
46 7
47 8
48 9
49 -1
50 9
51 12
52 -1
53 -1
54 8
55 -1
56 8
57 -1
58 7
59 8
60 9
61 10
62 8
63 8
64 10
65 10
66 8
67 9
68 12
69 9
70 7
71 8
72 -1
73 -1
74 -1
75 9
76 9
77 10
78 7
79 8
80 12
81 -1
82 -1
83 -1
84 -1
85 11
86 6
87 9
88 11
89 12
90 -1

List of values

[0, 1, 2, 4, 5, 2, 3, 6, 6, 5, 6, 4, 5, 3, 7, 9, 10, 6, 7, 7, 5, 6, 7, 6, 9, 5, 8, 6, 7, 7, 8, 11, 8, 10, 7, -1, -1, 7, 7, -1, -1, 5, 6, 8, -1, 7, 8, 9, -1, 9, 12, -1, -1, 8, -1, 8, -1, 7, 8, 9, 10, 8, 8, 10, 10, 8, 9, 12, 9, 7, 8, -1, -1, -1, 9, 9, 10, 7, 8, 12, -1, -1, -1, -1, 11, 6, 9, 11, 12, -1]