This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125169 #48 Apr 04 2025 09:17:06 %S A125169 15,31,47,63,79,95,111,127,143,159,175,191,207,223,239,255,271,287, %T A125169 303,319,335,351,367,383,399,415,431,447,463,479,495,511,527,543,559, %U A125169 575,591,607,623,639,655,671,687,703,719,735,751,767,783,799,815,831,847 %N A125169 a(n) = 16*n + 15. %C A125169 The identity (16*n + 15)^2 - (16*(n+1)^2 - 2*(n+1))*4^2 = 1 can be written as a(n)^2 - A158058(n+1)*4^2 = 1. - _Vincenzo Librandi_, Feb 01 2012 %C A125169 a(n-3), n >= 3, appears in the third column of triangle A239126 related to the Collatz problem. - _Wolfdieter Lang_, Mar 14 2014 %H A125169 Vincenzo Librandi, <a href="/A125169/b125169.txt">Table of n, a(n) for n = 0..10000</a> %H A125169 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A125169 Edward J. Barbeau, <a href="http://www.math.toronto.edu/barbeau/home.html">Polynomial Excursions</a>, Chapter 10: <a href="http://www.math.toronto.edu/barbeau/hxpol10.pdf">Diophantine equations</a> (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)). %H A125169 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A125169 a(n) = 2*a(n-1) - a(n-2); a(0)=15, a(1)=31. - _Harvey P. Dale_, Jan 03 2012 %F A125169 O.g.f.: (15 + x)/(1 - x)^2. - _Wolfdieter Lang_, Mar 14 2014 %F A125169 From _Elmo R. Oliveira_, Apr 04 2025: (Start) %F A125169 E.g.f.: exp(x)*(15 + 16*x). %F A125169 a(n) = A004771(2*n+1). (End) %t A125169 Table[16n + 15, {n, 0, 100}] %t A125169 LinearRecurrence[{2,-1},{15,31},100] (* or *) Range[15,1620,16] (* _Harvey P. Dale_, Jan 03 2012 *) %o A125169 (Magma) I:=[15, 31]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // _Vincenzo Librandi_, Jan 04 2012 %o A125169 (PARI) a(n) = 16*n + 15 \\ _Vincenzo Librandi_, Jan 04 2012 %Y A125169 Cf. A004771, A158058, A239126. %K A125169 nonn,easy %O A125169 0,1 %A A125169 _Artur Jasinski_, Nov 22 2006