A125185 Triangle read by rows: T(n,k) is the coefficient of t^k in the polynomial S(n,t)=[(1+t)(2+t)^n+(1-t)t^n]/2 (0<=k<=n).
1, 1, 2, 2, 4, 3, 4, 10, 9, 4, 8, 24, 28, 16, 5, 16, 56, 80, 60, 25, 6, 32, 128, 216, 200, 110, 36, 7, 64, 288, 560, 616, 420, 182, 49, 8, 128, 640, 1408, 1792, 1456, 784, 280, 64, 9, 256, 1408, 3456, 4992, 4704, 3024, 1344, 408, 81, 10, 512, 3072, 8320, 13440, 14400
Offset: 0
Examples
Triangle starts: 1; 1,2; 2,4,3; 4,10,9,4; 8,24,28,16,5; 16,56,80,60,25,6; Triangle (0,1,1,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,...) begins: 1 0, 1 0, 1, 2 0, 2, 4, 3 0, 4, 10, 9, 4 0, 8, 24, 28, 16, 5 0, 16, 56, 80, 60, 25, 6
Links
- S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
Crossrefs
Cf. A125184.
Programs
-
Maple
T:=proc(n,k) if k
Formula
T(n,k)=2^(n-k-1)*(n+k+1)binomial(n,k)/(n-k+1) if k
G.f.: (1-x)/((1-y*x)*(1-(y+2)*x)). - Philippe Deléham, Feb 26 2012
Recurrence : T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 26 2012
Comments