cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125187 Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.

This page as a plain text file.
%I A125187 #39 Jan 20 2024 09:17:59
%S A125187 1,1,3,12,52,232,1049,4777,21845,100159,460023,2115350,9735205,
%T A125187 44829766,206526972,951759621,4387156587,20226421380,93264500832,
%U A125187 430091815527,1983549213861,9148582037193,42197572190160,194643215702835
%N A125187 Number of Dumont permutations of the first kind of length 2n avoiding the patterns 1423 and 4132.
%C A125187 [1, 3, 12, 52, 232, ...] is INVERT transform of [1, 2, 27, 108, 440, ...] A026726. - _Michael Somos_, Apr 15 2012
%C A125187 HANKEL transform of sequence and the sequence omitting a(0) is the odd and even bisections of Fibonacci numbers respectively. This is the unique sequence with that property. - _Michael Somos_, Apr 15 2012
%C A125187 Bisection (even part) of A224747. - _Alois P. Heinz_, Jul 29 2013
%H A125187 Alois P. Heinz, <a href="/A125187/b125187.txt">Table of n, a(n) for n = 0..1000</a>
%H A125187 Cyril Banderier, Michael Wallner, <a href="https://arxiv.org/abs/1707.01931">Lattice paths with catastrophes</a>, arXiv:1707.01931 [math.CO], 2017.
%H A125187 Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.
%H A125187 A. Burstein, <a href="http://arxiv.org/abs/math/0402378">Restricted Dumont permutations</a>, arXiv:math/0402378 [math.CO], 2004
%H A125187 A. Burstein, <a href="http://dx.doi.org/10.1007/s00026-005-0256-4">Restricted Dumont permutations</a>, Annals of Combinatorics, 9, 2005, 269-280 (Theorem 3.12).
%F A125187 G.f.: [2-(1+x)C(x)]/[2-x-(1+x)C(x)], where C(x)=(1-sqrt(1-4x))/(2x) is the Catalan function.
%F A125187 From _Gary W. Adamson_, Jul 11 2011: (Start)
%F A125187 a(n) = upper left term in M^n, where M is an infinite square production matrix in which two columns of (1,2,3,...) are prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
%F A125187   1, 1, 0, 0, 0, 0, ...
%F A125187   2, 2, 1, 0, 0, 0, ...
%F A125187   3, 3, 1, 1, 0, 0, ...
%F A125187   4, 4, 1, 1, 1, 0, ...
%F A125187   5, 5, 1, 1, 1, 1, ...
%F A125187   ... (End)
%F A125187 Given g.f. A(x), then 0 = A(x)^2 * (x^3 - 2*x^2 + 5*x - 1) + A(x) *(x^2 - 9*x + 2) + (x^2 + 4*x -1). - _Michael Somos_, Jan 14 2014
%F A125187 0 = a(n)*(16*a(n+1) +6*a(n+2) -14*a(n+3) +210*a(n+4) -128*a(n+5) +18*a(n+6)) +a(n+1)*(-46*a(n+1) +143*a(n+2) -173*a(n+3) -283*a(n+4) +202*a(n+5) -29*a(n+6)) +a(n+2)*(-63*a(n+2) +386*a(n+3) +765*a(n+4) -529*a(n+5) +75*a(n+6)) +a(n+3)*(-559*a(n+3) +509*a(n+4) -149*a(n+5) +19*a(n+6)) +a(n+4)*(-108*a(n+4) +71*a(n+5) -12*a(n+6)) +a(n+5)*(-4*a(n+5) +a(n+6)). - _Michael Somos_, Jan 14 2014
%F A125187 G.f.: ( 2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x) ) / (2 - 10*x + 4*x^2 - 2*x^3). - _Michael Somos_, Apr 15 2012
%F A125187 G.f. = (1 - 3*y + y^2) / (1 - 4*y + 3*y^2 - y^3) = 1 / (1 - y / (1 - y / (1 - 2*y / (1 + y / (2 - y))))) where y = (1 - sqrt(1 - 4*x)) / 2. - _Michael Somos_, Apr 12 2012
%F A125187 D-finite with recurrence (-n+1)*a(n) +4*(2*n-3)*a(n-1) +(-13*n+19)*a(n-2) +(-13*n+75)*a(n-3) +(5*n-29)*a(n-4) +2*(-2*n+9)*a(n-5)=0. - _R. J. Mathar_, Jul 27 2013
%e A125187 G.f. = 1 + x + 3*x^2 + 12*x^3 + 52*x^4 + 232*x^5 + 1049*x^6 + 4777*x^7 + 21845*x^8 + ...
%p A125187 C:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*C)/(2-x-(1+x)*C): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=0..26);
%t A125187 a[ n_] := SeriesCoefficient[ (2 - 9 x + x^2 + (x + x^2) Sqrt[1 - 4 x]) / (2 (1 - 5 x + 2 x^2 - x^3)), {x, 0, n}]; (* _Michael Somos_, Jan 14 2014 *)
%o A125187 (PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 9*x + x^2 + (x + x^2) * sqrt(1 - 4*x + x * O(x^n)) ) / (2 * (1 - 5*x + 2*x^2 - x^3)), n))}; /* _Michael Somos_, Jan 14 2014 */
%Y A125187 Cf. A125188, A224747.
%K A125187 nonn
%O A125187 0,3
%A A125187 _Emeric Deutsch_, Dec 19 2006