cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125190 Number of ascents in all Schroeder paths of length 2n.

This page as a plain text file.
%I A125190 #52 Sep 17 2024 21:07:20
%S A125190 0,1,6,32,170,912,4942,27008,148626,822560,4573910,25534368,143027898,
%T A125190 803467056,4524812190,25537728000,144411206178,818017823808,
%U A125190 4640757865126,26364054632480,149959897539018,853941394691792,4867745532495086,27773897706129792
%N A125190 Number of ascents in all Schroeder paths of length 2n.
%C A125190 A Schroeder path of length 2n is a lattice path in the first quadrant, from the origin to the point (2n, 0) and consisting of steps U = (1, 1), D = (1, -1) and H = (2, 0); an ascent in a Schroeder path is a maximal strings of U steps.
%C A125190 a(n) is the number of points at L1 distance n - 2 from any point in Z^n, for n >= 2. - _Shel Kaphan_, Mar 24 2023
%H A125190 Alois P. Heinz, <a href="/A125190/b125190.txt">Table of n, a(n) for n = 0..400</a>
%H A125190 Emanuele Munarini, <a href="https://www.emis.de/journals/INTEGERS/papers/j29/j29.Abstract.html">Combinatorial properties of the antichains of a garland</a>, Integers, 9 (2009), 353-374.
%F A125190 a(n) = Sum_{k=0..n} k * A090981(n, k).
%F A125190 G.f.: z*R*(1 + z*R)/sqrt(1 - 6*z + z^2), where R = 1 + z*R + z*R^2, i.e., R = (1 - z -sqrt(1 - 6*z + z^2))/(2*z).
%F A125190 D-finite Recurrence: 2*n*(17*n - 26)*a(n) = 3*(68*n^2 - 137*n + 66)*a(n-1) - 2*(17*n^2 - 34*n - 48)*a(n-2) + 3*(n - 4)*a(n-3). - _Vaclav Kotesovec_, Oct 19 2012
%F A125190 a(n) ~ 2^(-3/4)*(3 + 2*sqrt(2))^n/sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 19 2012
%F A125190 a(n) = Sum_{i=0..n-1} binomial(n+1, n-i-1) * binomial(n+i, n). - _Vladimir Kruchinin_, Feb 05 2013
%F A125190 a(n) = (n*(n+1)/2)*hypergeometric([1-n, n+1], [3], -1). - _Peter Luschny_, Sep 17 2014
%F A125190 a(n) = A026002(n) - A190666(n-2) for n >= 2. - _Shel Kaphan_, Mar 24 2023
%F A125190 a(n) = ((n+1)/2) * A006319(n-1). - _Vladimir Kruchinin_, Apr 27 2024
%e A125190 a(2) = 6 because the Schroeder paths of length 4 are HH, H(U)D, (U)DH, (U)D(U)D, (U)HD and (UU)DD, having a total of 6 ascents (shown between parentheses).
%p A125190 R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*R*(1+z*R)/sqrt(1-6*z+z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25);
%p A125190 # second Maple program:
%p A125190 a:= proc(n) option remember;
%p A125190       `if`(n<3, [0,1,6][n+1], ((204*n^2-411*n+198)*a(n-1)
%p A125190        +(-34*n^2+68*n+96)*a(n-2) +(3*n-12)*a(n-3))/(2*n*(17*n-26)))
%p A125190     end:
%p A125190 seq(a(n), n=0..30);  # _Alois P. Heinz_, Oct 20 2012
%t A125190 CoefficientList[Series[x*(1-x-Sqrt[1-6*x+x^2])/(2*x)*(1+x*(1-x-Sqrt[1-6*x+x^2])/(2*x))/Sqrt[1-6*x+x^2], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 19 2012 *)
%t A125190 a[n_] := Sum[ Binomial[n+1, n-i-1]*Binomial[n+i, n], {i, 0, n-1}]; (* or *) a[n_] := Hypergeometric2F1[1-n, 1+n, 3, -1]*n*(n+1)/2; Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Feb 05 2013, after _Vladimir Kruchinin_ *)
%o A125190 (Sage)
%o A125190 A125190 = lambda n : (n^2+n)*hypergeometric([1-n, n+1], [3], -1)/2
%o A125190 [round(A125190(n).n(100)) for n in (0..23)] # _Peter Luschny_, Sep 17 2014
%Y A125190 Cf. A006319, A090981, A008288, A026002, A190666.
%Y A125190 -2-diagonal of A266213 for n>=1.
%K A125190 nonn
%O A125190 0,3
%A A125190 _Emeric Deutsch_, Dec 20 2006