cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125198 Number of magical labelings of the octahedral graph of magic sum n.

This page as a plain text file.
%I A125198 #18 Apr 01 2018 11:30:53
%S A125198 1,8,40,144,417,1032,2272,4568,8545,15072,25320,40824,63553,95984,
%T A125198 141184,202896,285633,394776,536680,718784,949729,1239480,1599456,
%U A125198 2042664,2583841,3239600,4028584,4971624,6091905,7415136,8969728,10786976,12901249,15350184
%N A125198 Number of magical labelings of the octahedral graph of magic sum n.
%H A125198 Colin Barker, <a href="/A125198/b125198.txt">Table of n, a(n) for n = 0..1000</a>
%H A125198 M. M. Ahmed, <a href="http://arXiv.org/abs/math.CO/0405476">Algebraic Combinatorics of Magic Squares</a>, math.CO/0405476, p73.
%H A125198 R. P. Stanley, <a href="/A002721/a002721.pdf">Examples of Magic Labelings</a>, Unpublished Notes, 1973 [Cached copy, with permission]
%H A125198 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (6,-14,14,0,-14,14,-6,1).
%F A125198 G.f.: (1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)). [Stanley] - _N. J. A. Sloane_, Jul 07 2014
%F A125198 From _Colin Barker_, Jan 13 2017: (Start)
%F A125198 a(n) = (15*(31+(-1)^n) + 1152*n + 1216*n^2 + 720*n^3 + 250*n^4 + 48*n^5 + 4*n^6) / 480.
%F A125198 a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>7.
%F A125198 (End)
%p A125198 a := proc(r) local r2 ; r2 := r^6/120+r^5/10+25*r^4/48+3*r^3/2+38*r^2/15+12*r/5 ; if r mod 2 = 0 then r2+1 ; else r2+15/16 ; fi ; end: for n from 0 to 40 do printf("%d ",a(n)) ; od;
%t A125198 (1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^7*(1 + x)) + O[x]^40 // CoefficientList[#, x]& (* _Jean-François Alcover_, Apr 01 2018 *)
%o A125198 (PARI) Vec((1+2*x+6*x^2+2*x^3+x^4)/((1-x)^7*(1+x)) + O(x^40)) \\ _Colin Barker_, Jan 13 2017
%K A125198 easy,nonn
%O A125198 0,2
%A A125198 _R. J. Mathar_, Jan 25 2007
%E A125198 Stanley reference added by _N. J. A. Sloane_, Jul 07 2014