A125228 Maximal number of squares of side 1 in a disk of radius n.
1, 7, 21, 39, 65, 93, 135, 179, 227, 285, 349, 415, 495, 573, 663, 759, 859, 963, 1071, 1199, 1325, 1457, 1591, 1735, 1891, 2049, 2207, 2383, 2557, 2735, 2929, 3123, 3327, 3529, 3739, 3955, 4191, 4427, 4665, 4901, 5159, 5413, 5681, 5951, 6231, 6515, 6799
Offset: 1
Examples
a(2)=7 since you cannot pack more than 7 unit-side squares in a disk of radius 2
Links
- David Dewan, Table of n, a(n) for n = 1..10000
- David Dewan, Drawings for n=1..12
Programs
-
Mathematica
f[n_] := 2 Sum[ IntegerPart[2 Sqrt[n^2 - (n - k - 1/2)^2]], {k, 0, n - 2}] + IntegerPart[2 Sqrt[n^2 - 1/2^2]]; Array[f, 47] (* Robert G. Wilson v, Jan 27 2007 *) a[n_]:=2 Sum[Floor[2 Sqrt[n^2-(k+1/2)^2]],{k,n-1}]+2n-1; Array[a, 47] (* David Dewan, Jun 07 2024*)
-
Python
from math import isqrt def A125228(n): return (m:=n<<1)-1+(sum(isqrt((k*(m-k+1)-n<<2)-1) for k in range(1,n))<<1) # Chai Wah Wu, Jul 18 2024
Formula
a(n) = 2*Sum_{k=1..n-1} floor(2*sqrt(n^2 - (k+1/2)^2)) + 2*n - 1.
Extensions
More terms from Robert G. Wilson v, Jan 27 2007