cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125228 Maximal number of squares of side 1 in a disk of radius n.

Original entry on oeis.org

1, 7, 21, 39, 65, 93, 135, 179, 227, 285, 349, 415, 495, 573, 663, 759, 859, 963, 1071, 1199, 1325, 1457, 1591, 1735, 1891, 2049, 2207, 2383, 2557, 2735, 2929, 3123, 3327, 3529, 3739, 3955, 4191, 4427, 4665, 4901, 5159, 5413, 5681, 5951, 6231, 6515, 6799
Offset: 1

Views

Author

Filippo ALUFFI PENTINI (falpen(AT)gmail.com), Jan 25 2007

Keywords

Examples

			a(2)=7 since you cannot pack more than 7 unit-side squares in a disk of radius 2
		

Crossrefs

Similar to A001182 but less constrained.
A124484 is another version.

Programs

  • Mathematica
    f[n_] := 2 Sum[ IntegerPart[2 Sqrt[n^2 - (n - k - 1/2)^2]], {k, 0, n - 2}] + IntegerPart[2 Sqrt[n^2 - 1/2^2]]; Array[f, 47] (* Robert G. Wilson v, Jan 27 2007 *)
    a[n_]:=2 Sum[Floor[2 Sqrt[n^2-(k+1/2)^2]],{k,n-1}]+2n-1;
    Array[a, 47]  (*  David Dewan, Jun 07 2024*)
  • Python
    from math import isqrt
    def A125228(n): return (m:=n<<1)-1+(sum(isqrt((k*(m-k+1)-n<<2)-1) for k in range(1,n))<<1) # Chai Wah Wu, Jul 18 2024

Formula

a(n) = 2*Sum_{k=1..n-1} floor(2*sqrt(n^2 - (k+1/2)^2)) + 2*n - 1.

Extensions

More terms from Robert G. Wilson v, Jan 27 2007