A125232 Triangle T(n,k) read by rows: the (n-k)-th term of the k-fold iterated partial sum of the pentagonal numbers.
1, 5, 1, 12, 6, 1, 22, 18, 7, 1, 35, 40, 25, 8, 1, 51, 75, 65, 33, 9, 1, 70, 126, 140, 98, 42, 10, 1, 92, 196, 266, 238, 140, 52, 11, 1, 117, 288, 462, 504, 378, 192, 63, 12, 1, 145, 405, 750, 966, 882, 570, 255, 75, 13, 1, 176, 550, 1155, 1716, 1848, 1452, 825, 330, 88, 14, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 5, 1; 12, 6, 1; 22, 18, 7, 1; 35, 40, 25, 8, 1; 51, 75, 65, 33, 9, 1; 70, 126, 140, 98, 42, 10, 1; ... Example: (5,3) = 65 = 25 + 40 = (4,3) + (4,2).
References
- Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966, p 189.
Links
- Robert Israel, Table of n, a(n) for n = 1..10011(rows 0 to 140, flattened)
Crossrefs
Programs
-
Maple
A125232 := proc(n,k) option remember ; if k = 0 then A000326(n) ; elif k = n-1 then 1 ; else procname(n-1,k)+procname(n-1,k-1) ; fi : end: # R. J. Mathar, Jun 09 2008
-
Mathematica
nmax = 11; col[1] = Table[n(3n-1)/2, {n, 1, nmax}]; col[k_] := col[k] = Prepend[Accumulate[col[k-1]], 0]; Table[col[k][[n]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 25 2019 *)
Formula
T(n,0)=A000326(n). T(n,k)=T(n-1,k) + T(n-1,k-1), k>0. - R. J. Mathar, Jun 09 2008
G.f. as triangle: (1+2*x)/((1-x)^2*(1-x-x*y)). - Robert Israel, Nov 07 2016
Extensions
Edited and extended by R. J. Mathar, Jun 09 2008