cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125232 Triangle T(n,k) read by rows: the (n-k)-th term of the k-fold iterated partial sum of the pentagonal numbers.

Original entry on oeis.org

1, 5, 1, 12, 6, 1, 22, 18, 7, 1, 35, 40, 25, 8, 1, 51, 75, 65, 33, 9, 1, 70, 126, 140, 98, 42, 10, 1, 92, 196, 266, 238, 140, 52, 11, 1, 117, 288, 462, 504, 378, 192, 63, 12, 1, 145, 405, 750, 966, 882, 570, 255, 75, 13, 1, 176, 550, 1155, 1716, 1848, 1452, 825, 330, 88, 14, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Examples

			First few rows of the triangle are:
   1;
   5,   1;
  12,   6,   1;
  22,  18,   7,   1;
  35,  40,  25,   8,   1;
  51,  75,  65,  33,   9,   1;
  70, 126, 140,  98,  42,  10,   1;
  ...
Example: (5,3) = 65 = 25 + 40 = (4,3) + (4,2).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966, p 189.

Crossrefs

Columns: A000326 (pentagonal numbers), A002411, A001296, A051836, A051923.
Cf. A095264 (row sums).

Programs

  • Maple
    A125232 := proc(n,k) option remember ; if k = 0 then A000326(n) ; elif k = n-1 then 1 ; else procname(n-1,k)+procname(n-1,k-1) ; fi : end: # R. J. Mathar, Jun 09 2008
  • Mathematica
    nmax = 11; col[1] = Table[n(3n-1)/2, {n, 1, nmax}]; col[k_] := col[k] = Prepend[Accumulate[col[k-1]], 0]; Table[col[k][[n]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 25 2019 *)

Formula

T(n,0)=A000326(n). T(n,k)=T(n-1,k) + T(n-1,k-1), k>0. - R. J. Mathar, Jun 09 2008
G.f. as triangle: (1+2*x)/((1-x)^2*(1-x-x*y)). - Robert Israel, Nov 07 2016

Extensions

Edited and extended by R. J. Mathar, Jun 09 2008