This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125273 #31 May 31 2022 11:21:25 %S A125273 1,1,2,6,23,106,567,3434,23137,171174,1376525,11934581,110817423, %T A125273 1095896195,11487974708,127137087319,1480232557526,18075052037054, %U A125273 230855220112093,3076513227516437,42686898298650967,615457369662333260 %N A125273 Eigensequence of triangle A085478: a(n) = Sum_{k=0..n-1} A085478(n-1,k)*a(k) for n > 0 with a(0) = 1. %H A125273 Seiichi Manyama, <a href="/A125273/b125273.txt">Table of n, a(n) for n = 0..517</a> %H A125273 Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>. [Cached copy] %H A125273 Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020. %H A125273 Jeffrey B. Remmel, <a href="https://doi.org/10.37236/3210">Consecutive Up-down Patterns in Up-down Permutations</a>, Electron. J. Combin., 21 (2014), #P3.2. %F A125273 a(n) = Sum_{k=0..n-1} binomial(n+k-1, n-k-1)*a(k) for n > 0 with a(0) = 1. %F A125273 G.f. satisfies: A(x) = 1 + x*A(x/(1-x)^2) / (1-x). - _Paul D. Hanna_, Aug 15 2007 %e A125273 a(3) = 1*(1) + 3*(1) + 1*(2) = 6; %e A125273 a(4) = 1*(1) + 6*(1) + 5*(2) + 1*(6) = 23; %e A125273 a(5) = 1*(1) + 10*(1) + 15*(2) + 7*(6) + 1*(23) = 106. %e A125273 Triangle A085478(n,k) = binomial(n+k, n-k) (with rows n >= 0 and columns k = 0..n) begins: %e A125273 1; %e A125273 1, 1; %e A125273 1, 3, 1; %e A125273 1, 6, 5, 1; %e A125273 1, 10, 15, 7, 1; %e A125273 1, 15, 35, 28, 9, 1; %e A125273 ... %e A125273 where g.f. of column k = 1/(1-x)^(2*k+1). %t A125273 A125273=ConstantArray[0,20]; A125273[[1]]=1; Do[A125273[[n]]=1+Sum[A125273[[k]]*Binomial[n+k-1, n-k-1],{k,1,n-1}];,{n,2,20}]; Flatten[{1,A125273}] (* _Vaclav Kotesovec_, Dec 10 2013 *) %o A125273 (PARI) a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(n+k-1, n-k-1))) %Y A125273 Cf. A085478, A125274 (variant), A351813. %K A125273 nonn %O A125273 0,3 %A A125273 _Paul D. Hanna_, Nov 26 2006