This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125277 #3 Mar 30 2012 18:37:01 %S A125277 1,1,2,7,32,169,981,6113,40386,280871,2047316,15595317,123876270, %T A125277 1024188790,8799533250,78443220865,724472766347,6922133112818, %U A125277 68331103658847,695983854400857,7305630631254242,78941171881894716 %N A125277 Eigensequence of triangle A110616: a(n) = Sum_{k=0..n-1} A110616(n-1,k)*a(k) for n>0 with a(0)=1. %F A125277 a(n) = Sum_{k=0..n-1} a(k) * C(3*n-2*k-2,n-k-1)*(k+1)/(3*n-2*k-2) for n>0 with a(0)=1. %e A125277 a(3) = 3*(1) + 2*(1) + 1*(2) = 7; %e A125277 a(4) = 12*(1) + 7*(1) + 3*(2) + 1*(7) = 32; %e A125277 a(5) = 55*(1) + 30*(1) + 12*(2) + 4*(7) + 1*(32) = 169. %e A125277 Triangle A110616(n,k) = C(3*n-2*k+1, n-k)*(k+1)/(3*n-2*k+1) begins: %e A125277 1; %e A125277 1, 1; %e A125277 3, 2, 1; %e A125277 12, 7, 3, 1; %e A125277 55, 30, 12, 4, 1; %e A125277 273, 143, 55, 18, 5, 1; %e A125277 1428, 728, 273, 88, 25, 6, 1; ... %e A125277 where g.f. of column k = G001764(x)^(k+1) %e A125277 and G001764(x) = 1 + x*G001764(x)^3 is the g.f. of A001764. %o A125277 (PARI) {a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(3*n-2*k-2,n-k-1)*(k+1)/(3*n-2*k-2)))} %Y A125277 Cf. A110616, A001764, A091768. %K A125277 nonn %O A125277 0,3 %A A125277 _Paul D. Hanna_, Nov 26 2006