cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125290 Numbers with at least two distinct digits in decimal representation, none of which is 0.

This page as a plain text file.
%I A125290 #33 May 06 2024 08:08:12
%S A125290 12,13,14,15,16,17,18,19,21,23,24,25,26,27,28,29,31,32,34,35,36,37,38,
%T A125290 39,41,42,43,45,46,47,48,49,51,52,53,54,56,57,58,59,61,62,63,64,65,67,
%U A125290 68,69,71,72,73,74,75,76,78,79,81,82,83,84,85,86,87,89,91,92,93,94,95,96,97,98,112,113,114,115,116,117,118,119,121,122,123
%N A125290 Numbers with at least two distinct digits in decimal representation, none of which is 0.
%C A125290 Also numbers having at least two partitions into digit values of their decimal representations: A061827(a(n)) > 1.
%C A125290 First differs from A101594 at a(83) = 123 != 131 = A101594(83). - _Michael S. Branicky_, Dec 13 2021
%H A125290 Reinhard Zumkeller, <a href="/A125290/b125290.txt">Table of n, a(n) for n = 1..10000</a>
%H A125290 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A125290 A043537(A004719(a(n))) > 1.
%F A125290 A168046(a(n)) * A043537(A004719(a(n))) > 1. - _Reinhard Zumkeller_, Jun 18 2013
%F A125290 a(n) ~ n. - _Charles R Greathouse IV_, Feb 13 2017
%t A125290 Select[Range[200], FreeQ[#, 0] && Length[Union[#]] > 1 & [IntegerDigits[#]] &] (* _Paolo Xausa_, May 06 2024 *)
%o A125290 (Haskell)
%o A125290 a125290 n = a125290_list !! (n-1)
%o A125290 a125290_list = filter ((> 1) . a043537) a052382_list
%o A125290 -- _Reinhard Zumkeller_, Jun 18 2013
%o A125290 (Python)
%o A125290 def ok(n): s = set(str(n)); return len(s) >= 2 and "0" not in s
%o A125290 print([k for k in range(124) if ok(k)]) # _Michael S. Branicky_, Dec 13 2021
%Y A125290 Subsequence of A052382.  Supersequence of A101594.
%Y A125290 Cf. A125293, A004719, A043537, A061827, A168046.
%K A125290 nonn,base,easy
%O A125290 1,1
%A A125290 _Reinhard Zumkeller_, Nov 26 2006
%E A125290 Name clarified by _Michael S. Branicky_, Dec 13 2021