A125297 Number of nonempty subsets S of {1,2,3,...,n} such that each member of S divides the sum of all members of S.
1, 2, 4, 5, 6, 9, 10, 12, 15, 17, 18, 24, 25, 27, 31, 34, 35, 42, 43, 59, 62, 63, 64, 82, 83, 84, 88, 97, 98, 146, 147, 153, 156, 157, 158, 185, 186, 187, 189, 314, 315, 337, 338, 343, 430, 431, 432, 491, 492, 495, 497, 500, 501
Offset: 1
Programs
-
Mathematica
(*first do*) Needs["Combinatorica`"] (*then*) f[n_] := f[n] = Block[{c = 0, k = 0, lmt = 2^(n - 1), lst = Range[n - 1], s = {}}, While[k < lmt + 1, k++; s = NextSubset[lst, s]; t = Join[s, {n}]; If[ Union[ IntegerQ@ # & /@ (Plus @@ t/t)] == {True}, c++ ]]; c]; Do[ Print[{n, f@n}], {n, 28}]; Table[ Sum[ f@i, {i, n}], {n, 28}] (* Robert G. Wilson v, Jul 18 2007 *)
-
Python
from math import lcm from sympy import isprime from functools import cache @cache def b(n, s, l): # n, sum, lcm if n == 0: return s and s%l == 0 return b(n-1, s, l) + b(n-1, s + n, lcm(l, n)) def a(n): return b(n, 0, 1) print([a(n) for n in range(1, 31)]) # Michael S. Branicky, Jan 12 2022
Formula
a(p) = a(p-1) + 1 for prime p > 3 (see proof in Comments). - Michael S. Branicky, Jan 12 2022
Extensions
a(29)-a(41) from Rémy Sigrist, Oct 06 2020
a(42)-a(53) from Michael S. Branicky, Jan 12 2022
Comments