This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125308 #25 Jul 21 2025 17:20:51 %S A125308 3,11,13,31,83,101,103,113,131,181,311,313,331,383,811,881,883,1013, %T A125308 1031,1033,1103,1181,1301,1303,1381,1801,1811,1831,3001,3011,3083, %U A125308 3181,3301,3313,3331,3803,3833,3881,8011,8081,8101,8111,8311,8803,8831,10103 %N A125308 Primes having only {0, 1, 3, 8} as digits. %C A125308 Original name: Reflectable primes: those which are invariant upon mirror reflection along the line they are written on. Must contain only the digits 0, 1, 3, or 8. %C A125308 A rough heuristic argument suggests that there are infinite pairs (n, prime(n)) in which both n and prime(n) are reflectable, like in prime(1101088113338) = 33138318000311. See Links for a table of the first 250 such pairs. - _Giovanni Resta_, Mar 10 2013 %H A125308 Arkadiusz Wesolowski, <a href="/A125308/b125308.txt">Table of n, a(n) for n = 1..10000</a> %H A125308 Prime Glossary, <a href="https://t5k.org/glossary/xpage/ReflectablePrime.html">Reflectable prime</a> %H A125308 Giovanni Resta, <a href="/A125308/a125308_1.txt">The first 250 reflectable primes whose indices are reflectable.</a> %H A125308 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A125308 Select[FromDigits /@ Tuples[{0, 1, 3, 8}, 5], PrimeQ[#] &] (* _Arkadiusz Wesolowski_, Mar 06 2013 *) %o A125308 (Haskell) %o A125308 import Data.List (intersect) %o A125308 a125308 n = a125308_list !! (n-1) %o A125308 a125308_list = 3 : h [1,3] where %o A125308 h (u:us) | null (show v `intersect` "245679") && %o A125308 a010051' v == 1 = v : h (us ++ [v]) %o A125308 | otherwise = h (us ++ [v]) %o A125308 where v = u + 10 %o A125308 -- _Reinhard Zumkeller_, Jul 16 2014 %Y A125308 Cf. A010051, A007628 (reflectable emirps). %K A125308 easy,nonn,base %O A125308 1,1 %A A125308 _G. L. Honaker, Jr._, Dec 10 2006 %E A125308 More terms from _Arkadiusz Wesolowski_, Mar 06 2013