This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125551 #12 Nov 20 2019 18:16:53 %S A125551 41,767,178939,18500393,48409924397,12569511639119,15392144025383, %T A125551 358066574927343685421,282108494885353559158399, %U A125551 911609127797473147741660153,1128121200256091571107985892349 %N A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p. %C A125551 This is an integer by a theorem of Waring and Wolstenholme. %H A125551 R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057, 2011 %p A125551 f1:=proc(n) local p; %p A125551 p:=ithprime(n); %p A125551 (1/p)*numer(add(1/i^2,i=1..p-1)); %p A125551 end proc; %p A125551 [seq(f1(n),n=3..20)]; %t A125551 a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a %t A125551 Table[Sum[1/k^2,{k,p-1}]/p,{p,Prime[Range[3,20]]}]//Numerator (* _Harvey P. Dale_, Nov 20 2019 *) %Y A125551 Cf. A061002, A034602, A186720, A186722. %K A125551 nonn %O A125551 3,1 %A A125551 _Artur Jasinski_, Jan 03 2007