This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125574 #14 Jun 19 2021 04:01:18 %S A125574 31515413,69730637,132102911,132375259,215483129,284491367,325689253, %T A125574 388190689,548369603,620829113,633418787,638213603,670216277, %U A125574 793852487,797759539,960200149,1038197399,1050359137,1092920249,1331713301,1342954871,1349496367,1365964199 %N A125574 Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14). %C A125574 This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k). %H A125574 Fabien Sibenaler, <a href="/A125574/b125574.txt">Table of n, a(n) for n = 1..250</a> %e A125574 prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14). %o A125574 (PARI) lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ _Jinyuan Wang_, Jun 18 2021 %Y A125574 Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404. %K A125574 nonn %O A125574 1,1 %A A125574 _Rémi Eismann_ and _Fabien Sibenaler_, Jan 27 2007 %E A125574 Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009