This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125604 #23 Jun 19 2025 00:10:50 %S A125604 2,2,2,3,2,2,2,3,3,3,3,5,2,2,2,3,3,5,5,7,3,3,3,3,3,3,5,5,2,2,2,7,3,3, %T A125604 3,13,5,5,5,7,7,5,5,5,3,3,3,5,5,13,3,3,3,7,7,19,5,5,5,7,2,2,2,11,11, %U A125604 17,7,7,3,3,3,5,5,5,11,11,5,3,3,3,7,7,7,17,11,11,5,5,5,13,23,19,3,3,3,7,5,5 %N A125604 Minimum of the largest prime factors of a number and its two neighbors. %H A125604 Robert Israel, <a href="/A125604/b125604.txt">Table of n, a(n) for n = 3..10000</a> %F A125604 a(n) = min{lpf(n-1),lpf(n),lpf(n+1)}, where lpf is the largest prime factor: lpf(k) = A006530(k). %e A125604 a(93) = min{lpf(92),lpf(93),lpf(94)} = min{23,31,47} = 23. %p A125604 LPF:= map(t -> max(numtheory:-factorset(t)), [$2..101]): %p A125604 [seq](min(LPF[i..i+2]),i=1..nops(LPF)-2); # _Robert Israel_, Jun 16 2025 %t A125604 LPF = FactorInteger[ # ][[ -1, 1]] &; Map[Min[{LPF[ # - 1], LPF[ # ], LPF[ # + 1]}] &, Range[3, 200]] %t A125604 Min/@Partition[Table[FactorInteger[n][[-1,1]],{n,110}],3,1] (* _Harvey P. Dale_, May 25 2015 *) %o A125604 (PARI) a(n) = my(lpf(k)=vecmax(factor(k)[, 1])); vecmin([lpf(n-1), lpf(n), lpf(n+1)]); \\ _Ruud H.G. van Tol_, Aug 15 2024 %o A125604 (Python) %o A125604 from sympy import primefactors %o A125604 def a(n): return min(map(lambda n: primefactors(n)[-1], range(n-1,n+2))) # _David Radcliffe_, Jun 16 2025 %Y A125604 Cf. A006530, A093074. %K A125604 nonn,look %O A125604 3,1 %A A125604 _Carlos Alves_, Nov 27 2006