A125607 Lesser of the smallest pair of consecutive positive reduced quadratic residues modulo p = prime(n) > 5.
1, 3, 3, 1, 4, 1, 4, 1, 3, 1, 9, 1, 6, 3, 3, 9, 1, 1, 1, 3, 1, 1, 4, 1, 3, 3, 1, 1, 3, 1, 4, 4, 1, 3, 9, 1, 9, 3, 3, 1, 1, 6, 1, 4, 1, 3, 3, 1, 1, 1, 3, 1, 1, 4, 1, 3, 1, 6, 9, 6, 1, 1, 6, 4, 1, 3, 3, 1, 1, 1, 3, 4, 1, 4, 3, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 4, 1, 3, 1, 1, 3, 4, 1, 4, 1, 6, 3, 9, 6, 3, 1, 4, 1, 3, 1
Offset: 4
Examples
The quadratic residues of 13=prime(6) are 1, 3, 4, 9, 10 and 12. The least consecutive pair of residues is (3, 4); hence a(6)=3.
Links
- Nick Hobson, Table of n, a(n) for n = 4..1003
- D. H. Lehmer and Emma Lehmer, On Runs of Residues, Proc. American Mathematical Society, Vol. 13, No. 1 (Feb., 1962), pp. 102-106.
Programs
-
PARI
vector(108, m, p=prime(m+3); if(p%8==1||p%8==7, 1, if(p%12==1||p%12==11, 3, if(p%10==1||p%10==9, 4, if((p%24==1||p%24==5||p%24==19||p%24==23) && (p%28==1||p%28==3||p%28==9||p%28==19||p%28==25||p%28==27), 6, 9)))))
Comments