This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125611 #31 May 02 2024 17:33:41 %S A125611 2,19,19,3449,32261,152617,3294173,3376853,135967277,135967277, %T A125611 7909306973,92233439147,115385868869,1356446145697,56020344873707, %U A125611 56020344873707,930522055948829,9116268492336169,10744682090246617 %N A125611 a(n) is the smallest prime p such that 7^n divides p^6 - 1. %C A125611 a(n) is the smallest 6th root of unity (mod 7^n) that is prime. - _Robert Israel_, Jan 14 2024 %H A125611 Robert Israel, <a href="/A125611/b125611.txt">Table of n, a(n) for n = 1..1000</a> %H A125611 Wilfrid Keller and Jörg Richstein, <a href="https://web.archive.org/web/20140809030451/http://www1.uni-hamburg.de/RRZ/W.Keller/FermatQuotient.html">Fermat quotients that are divisible by p</a>, 2014. [Wayback Machine link] %p A125611 f:= proc(n) local R, r, i; %p A125611 R:= sort(map(rhs@op, [msolve(x^6=1, 7^n)])); %p A125611 for i from 0 do %p A125611 for r in R do %p A125611 if isprime(7^n * i + r) then return 7^n * i + r fi %p A125611 od od; %p A125611 end proc: %p A125611 map(f, [$1..30]); # _Robert Israel_, Jan 14 2024 %o A125611 (PARI) \\ See A125609 %o A125611 (Python) %o A125611 from itertools import count %o A125611 from sympy import nthroot_mod, isprime %o A125611 def A125611(n): %o A125611 m = 7**n %o A125611 r = sorted(nthroot_mod(1,6,m,all_roots=True)) %o A125611 for i in count(0,m): %o A125611 for p in r: %o A125611 if isprime(i+p): return i+p # _Chai Wah Wu_, May 02 2024 %Y A125611 Cf. A125609, A125610, A125612, A125632, A125633, A125634, A125635. %K A125611 nonn %O A125611 1,1 %A A125611 _Alexander Adamchuk_, Nov 28 2006 %E A125611 More terms from _Ryan Propper_, Jan 03 2007 %E A125611 More terms from _Martin Fuller_, Jan 11 2007