cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125617 Sum of the squares of the quadratic nonresidues of prime(n).

This page as a plain text file.
%I A125617 #13 Dec 20 2024 02:15:36
%S A125617 0,4,13,70,253,299,680,1235,2691,3683,6169,7733,10414,13717,22278,
%T A125617 23373,38586,35563,51255,76041,60298,96222,103916,110894,143172,
%U A125617 165337,206000,218494,206991,229164,377698,413305,410726,471766,535357,647941,625331
%N A125617 Sum of the squares of the quadratic nonresidues of prime(n).
%C A125617 For all n > 3, prime(n) divides a(n).
%D A125617 D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.
%H A125617 Nick Hobson, <a href="/A125617/b125617.txt">Table of n, a(n) for n = 1..1000</a>
%e A125617 The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = 3^2 + 5^2 + 6^2 = 70.
%t A125617 Table[Total[Complement[Range[p-1],Union[Table[PowerMod[k, 2, p], {k, p}]]]^2],{p,Prime@Range[37]}] (* _James C. McMahon_, Dec 19 2024 *)
%o A125617 (PARI) vector(37, n, p=prime(n); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)^2); p*(p-1)*(2*p-1)/6-t)
%Y A125617 Cf. A076409, A076410, A125613-A125618.
%K A125617 easy,nonn
%O A125617 1,2
%A A125617 _Nick Hobson_, Nov 30 2006