cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6).

This page as a plain text file.
%I A125629 #11 Jan 08 2019 05:17:44
%S A125629 1,-1,0,0,0,1,2,2,1,0,-1,-3,-5,-5,-3,0,4,9,13,13,8,-1,-13,-26,-35,-34,
%T A125629 -20,6,40,74,95,89,48,-26,-120,-209,-258,-232,-111,98,355,587,699,601,
%U A125629 245,-342,-1040,-1641,-1887,-1545,-504,1137,3023,4568,5073,3936,912
%N A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6).
%H A125629 The Knot Atlas, <a href="http://katlas.math.toronto.edu/wiki/L6a3">L6a3</a>
%H A125629 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,0,-1).
%F A125629 G.f.: 1/(x^(17/2)*f(x)), where f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a3.
%F A125629 a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-6), n >= 6. - _Franck Maminirina Ramaharo_, Jan 08 2019
%t A125629 CoefficientList[Series[-1/(1 - x + x^2 - x^3 + x^4 + x^6), {x, 0, 50}], x]
%Y A125629 Cf. A008620, A010892, A014019, A099443, A099479, A099480, A112712, A129920, A129704, A129903.
%K A125629 sign,easy
%O A125629 0,7
%A A125629 _Roger L. Bagula_, Jun 07 2007
%E A125629 Edited by _Franck Maminirina Ramaharo_, Jan 08 2019