This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125629 #11 Jan 08 2019 05:17:44 %S A125629 1,-1,0,0,0,1,2,2,1,0,-1,-3,-5,-5,-3,0,4,9,13,13,8,-1,-13,-26,-35,-34, %T A125629 -20,6,40,74,95,89,48,-26,-120,-209,-258,-232,-111,98,355,587,699,601, %U A125629 245,-342,-1040,-1641,-1887,-1545,-504,1137,3023,4568,5073,3936,912 %N A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6). %H A125629 The Knot Atlas, <a href="http://katlas.math.toronto.edu/wiki/L6a3">L6a3</a> %H A125629 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,0,-1). %F A125629 G.f.: 1/(x^(17/2)*f(x)), where f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a3. %F A125629 a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-6), n >= 6. - _Franck Maminirina Ramaharo_, Jan 08 2019 %t A125629 CoefficientList[Series[-1/(1 - x + x^2 - x^3 + x^4 + x^6), {x, 0, 50}], x] %Y A125629 Cf. A008620, A010892, A014019, A099443, A099479, A099480, A112712, A129920, A129704, A129903. %K A125629 sign,easy %O A125629 0,7 %A A125629 _Roger L. Bagula_, Jun 07 2007 %E A125629 Edited by _Franck Maminirina Ramaharo_, Jan 08 2019