cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125630 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1 and at least one of digits 2,3,4,5,6,7,8,9.

Original entry on oeis.org

9, 81, 729, 6561, 59049, 531441, 4782969, 43006401, 385606089, 3440214801, 30482931609, 267934415841, 2334817386729, 20170171738161, 172797111134649, 1468818073594881, 12396189742824969, 103943773544221521, 866556801437680089, 7187319207979903521
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Jan 28 2007, Feb 13 2007

Keywords

Comments

Note that the first seven terms of the sequence are powers of 9.

Examples

			a(5) = 59049.
		

Programs

  • Maple
    f:=n->8*8^n-28*7^n+56*6^n-70*5^n+56*4^n-28*3^n+8*2^n-1;
  • Mathematica
    Table[8*8^n-28*7^n+56*6^n-70*5^n+56*4^n-28*3^n+8*2^n-1,{n,20}] (* James C. McMahon, Dec 20 2024 *)
  • PARI
    Vec(-9*x*(4480*x^7-12176*x^6+11772*x^5-6168*x^4+1809*x^3-303*x^2+27*x-1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 8*8^n-28*7^n+56*6^n-70*5^n+56*4^n-28*3^n+8*2^n-1.
G.f.: -9*x*(4480*x^7 -12176*x^6 +11772*x^5 -6168*x^4 +1809*x^3 -303*x^2 +27*x -1)/((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)). - Colin Barker, Feb 22 2015