This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125665 #11 Jan 15 2021 01:58:28 %S A125665 2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,202,203,205, %T A125665 207,212,213,215,217,222,223,225,227,232,233,235,237,242,243,245,247, %U A125665 252,253,255,257,262,263,265,267,272,273,275,277,282,283,285,287,292 %N A125665 Numbers such that both the left half of the digits and right half of the digits form a prime. %C A125665 If the number of digits in the number is odd > 1, then the middle digit is ignored. %F A125665 The left half of an n-digit number is the first floor(n/2) digits. The right half of an n-digit number is the last floor(n/2) digits. %e A125665 22 is the first number with this property having more than 1 digit. %t A125665 lhrhQ[n_]:=Module[{idn=IntegerDigits[n],len=Floor[IntegerLength[n]/2]}, And @@ PrimeQ[FromDigits/@{Take[idn,len],Take[idn,-len]}]]; Join[ {2,3,5,7}, Select[Range[300],lhrhQ]] (* _Harvey P. Dale_, Jul 05 2013 *) %o A125665 (PARI) bothprime(n) = { local(x,ln,y,lp,rp); for(x=1,n, y=Str(x); if(x > 9, ln=floor(length(y)/2), ln=1); lp = eval(left(y,ln)); rp = eval(right(y,ln)); if(isprime(lp)&& isprime(rp),print1(x",") ) ) } %Y A125665 Cf. A125525. %K A125665 base,easy,nonn %O A125665 1,1 %A A125665 _Cino Hilliard_, Jan 29 2007