cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125665 Numbers such that both the left half of the digits and right half of the digits form a prime.

This page as a plain text file.
%I A125665 #11 Jan 15 2021 01:58:28
%S A125665 2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,202,203,205,
%T A125665 207,212,213,215,217,222,223,225,227,232,233,235,237,242,243,245,247,
%U A125665 252,253,255,257,262,263,265,267,272,273,275,277,282,283,285,287,292
%N A125665 Numbers such that both the left half of the digits and right half of the digits form a prime.
%C A125665 If the number of digits in the number is odd > 1, then the middle digit is ignored.
%F A125665 The left half of an n-digit number is the first floor(n/2) digits. The right half of an n-digit number is the last floor(n/2) digits.
%e A125665 22 is the first number with this property having more than 1 digit.
%t A125665 lhrhQ[n_]:=Module[{idn=IntegerDigits[n],len=Floor[IntegerLength[n]/2]}, And @@ PrimeQ[FromDigits/@{Take[idn,len],Take[idn,-len]}]]; Join[ {2,3,5,7}, Select[Range[300],lhrhQ]] (* _Harvey P. Dale_, Jul 05 2013 *)
%o A125665 (PARI) bothprime(n) = { local(x,ln,y,lp,rp); for(x=1,n, y=Str(x); if(x > 9, ln=floor(length(y)/2), ln=1); lp = eval(left(y,ln)); rp = eval(right(y,ln)); if(isprime(lp)&& isprime(rp),print1(x",") ) ) }
%Y A125665 Cf. A125525.
%K A125665 base,easy,nonn
%O A125665 1,1
%A A125665 _Cino Hilliard_, Jan 29 2007