This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125682 #60 Mar 29 2025 09:15:39 %S A125682 3,21,129,777,4665,27993,167961,1007769,6046617,36279705,217678233, %T A125682 1306069401,7836416409,47018498457,282110990745,1692665944473, %U A125682 10155995666841,60935974001049,365615844006297,2193695064037785,13162170384226713,78973022305360281,473838133832161689 %N A125682 a(n) = 3*(6^n - 1)/5. %C A125682 The base-6 numbers 3_6, 33_6, 333_6, 3333_6, 33333_6, 333333_6, ... converted to base 10. %C A125682 Also the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in Ngaokrajang link. - _Jens Ahlström_, Aug 29 2023 %H A125682 Bruno Berselli, <a href="/A125682/b125682.txt">Table of n, a(n) for n = 1..1000</a> %H A125682 Kival Ngaokrajang, <a href="/A003464/a003464.pdf">Illustration of initial terms</a>. %H A125682 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-6). %F A125682 G.f.: 3*x/((1-x)*(1-6*x)). - _Bruno Berselli_, Apr 18 2012 %F A125682 a(n) = 7*a(n-1) - 6*a(n-2). - _Wesley Ivan Hurt_, Dec 25 2021 %F A125682 From _Elmo R. Oliveira_, Mar 29 2025: (Start) %F A125682 E.g.f.: 3*exp(x)*(exp(5*x) - 1)/5. %F A125682 a(n) = 3*A003464(n). (End) %e A125682 Base 6 Base 10 %e A125682 3 ............. 3 = 3*6^0 %e A125682 33 ........... 21 = 3*6^1 + 3*6^0 %e A125682 333 ......... 129 = 3*6^2 + 3*6^1 + 3*6^0 %e A125682 3333 ........ 777 = 3*6^3 + 3*6^2 + 3*6^1 + 3*6^0, etc. %p A125682 seq((6^n-1)*3/5, n=1..27); %t A125682 a[n_]:=(6^n-1)*3/5; Table[a[n],{n,1,22}] (* _Robert P. P. McKone_, Aug 29 2023 *) %o A125682 (Magma) [(6^n-1)*3/5: n in [1..22]]; // _Bruno Berselli_, Apr 18 2012 %Y A125682 Cf. A000400, A003464, A005610, A024062, A105281, A125687, A146884. %K A125682 nonn,easy %O A125682 1,1 %A A125682 _Zerinvary Lajos_, Jan 31 2007 %E A125682 Edited by _N. J. A. Sloane_, Feb 02 2007 %E A125682 Definition rewritten (with Lajos formula) from _Bruno Berselli_, Apr 18 2012