This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125689 #13 Apr 26 2025 08:28:20 %S A125689 1,10,18,26,31,35,39,80,49,47,57,53,63,59,65,67,248,73,71,79,85,77,93, %T A125689 105,332,83,89,111,97,482,95,103,101,674,135,129,115,107,800,113,1040, %U A125689 121,1010,119,127,125,153,159,133,1136,145,131,171,1304,137,151,1520 %N A125689 a(n) is the smallest number having exactly n partitions into three distinct primes. %C A125689 A125688(a(n)) = n and A125688(m) <> n for m < a(n). %H A125689 Andrew Howroyd, <a href="/A125689/b125689.txt">Table of n, a(n) for n = 0..1000</a> %t A125689 nmax = 300; kmax = 10000; c = ConstantArray[Null, nmax]; %t A125689 For[k = 1, k <= kmax, k++, %t A125689 l = Length@Select[IntegerPartitions[k, {3}, Prime@Range@kmax], #[[1]] > #[[2]] > #[[3]] &]; %t A125689 If[l <= nmax && c[[l]] == Null, c[[l]] = k]; %t A125689 ]; %t A125689 Prepend[c[[1 ;; First@FirstPosition[c, Null] - 1]], 1] (* _Robert Price_, Apr 25 2025 *) %o A125689 (PARI) \\ here b(n) is A125688. %o A125689 b(n, brk=oo)={my(s=0); forprime(p=2, n\3, if((n-p)%2==0, forprime(q=p+1, (n-p)/2-1, if(isprime(n-p-q), s++; if(s>=brk, return(-1))) ))); s} %o A125689 sols(n, lim, f)={my(u=vector(n), r=n); for(i=1, lim, my(t=f(i)); if(t>0 && t<=#u && !u[t], u[t]=i; r--; if(r==0, return(u)))); my(m=1); while(m<=#u && u[m], m++); u[1..m-1]} %o A125689 { my(nn=100); nn++; sols(nn, 10^4, i->b(i, nn)+1) } \\ _Andrew Howroyd_, Jan 06 2020 %Y A125689 Cf. A125688. %K A125689 nonn %O A125689 0,2 %A A125689 _Reinhard Zumkeller_, Nov 30 2006 %E A125689 Terms a(40) and beyond from _Andrew Howroyd_, Jan 06 2020