A125752 Moessner triangle using the Fibonacci terms.
1, 1, 2, 4, 9, 8, 26, 69, 77, 55, 261, 806, 1088, 920, 610, 4062, 14362, 22887, 22856, 17034, 10946, 98912, 395253, 728605, 847832, 721756, 502606, 317811, 3809193, 17008391, 35644614, 47557978, 46166656, 35655012, 23828383, 14930352
Offset: 1
Examples
The upper left corner of the array M(n,c) is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... 1, 4, 9, 22, 43, 77, 166, 310, 543, 920, 1907, 3504, 6088, 10269, 17034, ... 4, 26, 69, 235, 545, 1088, 2995, 6499, 12587, 22856, 57601, 121003, 230773, ... 26, 261, 806, 3801, 10300, 22887, 80488, 201491, 432264, 847832, 2586423, ... 261, 4062, 14362, 94850, 296341, 728605, 3315028, 9488917, 22445416, ... 4062, 98912, 395253, 3710281, 13199198, 35644614, 213010460, 690899755, ... and dropping the columns with column numbers in A014132, reading the remaining array by antidiagonals leads to the final triangle T(n,m): 1; 1, 2; 4, 9, 8; 26, 69, 77, 55; 261, 806, 1088, 920, 610; ...
References
- J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.
Links
- Joshua Zucker, Table of n, a(n) for n = 1..55
- G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
- Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
- R. Krebbers, L. Parlant, and A. Silva, Moessner's theorem: an exercise in coinductive reasoning in Coq, Theory and practice of formal methods, 309-324, Lecture Notes in Comput. Sci., 9660, Springer, 2016.
- Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
- Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
- Ivan Paasche, Ein neuer Beweis des Moessnerschen Satzes S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 1-5 (1953). [Two years are listed at the beginning of the journal issue.]
- Ivan Paasche, Beweis des Moessnerschen Satzes mittels linearer Transformationen, Arch. Math. (Basel) 6 (1955), 194-199.
- Ivan Paasche, Eine Verallgemeinerung des Moessnerschen Satzes, Compositio Math. 12 (1956), 263-270.
- Hans Salié, Bemerkung zu einem Satz von A. Moessner, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 7-11 (1953). [Two years are listed at the beginning of the journal issue.]
- Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
Formula
T(n,n) = A081667(n-1).
Extensions
More terms from Joshua Zucker, Jun 17 2007
Description of starting row corrected, comments detailed with formulas by R. J. Mathar, Sep 17 2009
Comments