This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125760 #19 Nov 19 2023 08:52:43 %S A125760 1,1,4,432,11943936,1031956070400000,4159895825138319360000000000, %T A125760 13809882382682787973867537170432000000000000000, %U A125760 769161257109634779902443718589603914508004789479014400000000000000000000,16596916396875768196482032091931000424134701157007816971266990744831779993781534720000000000000000000000000 %N A125760 a(n) = Product_{k=1..n} A002109(k). %H A125760 N. J. A. Sloane, <a href="/A125760/b125760.txt">Table of n, a(n) for n = 0..18</a> %F A125760 From _Vaclav Kotesovec_, Nov 19 2023: (Start) %F A125760 a(n) = BarnesG(n+2)^n / Product_{k=1..n+1} BarnesG(k)^2. %F A125760 a(n) ~ A^(n+1) * n^(n^3/6 + n^2/2 + 5*n/12 + 1/12) / exp(5*n^3/36 + n^2/4 + n/12 + zeta(3)/(4*Pi^2)), where A is the Glaisher-Kinkelin constant A074962. (End) %p A125760 seq(mul(mul(mul(k,j=1..k), k=1..m), m=1..n), n=0..9); # _Zerinvary Lajos_, Jun 01 2007 %t A125760 Table[Product[Gamma[1 + k]^k/BarnesG[1 + k], {k, 1, n}], {n, 0, 10}] (* _Vaclav Kotesovec_, Nov 19 2023 *) %t A125760 Table[BarnesG[n + 2]^n/Product[BarnesG[k]^2, {k, 1, n + 1}], {n, 0, 10}] (* _Vaclav Kotesovec_, Nov 19 2023 *) %Y A125760 Cf. A002109, A255269. %K A125760 nonn %O A125760 0,3 %A A125760 _N. J. A. Sloane_, based on a suggestion from _J. M. Bergot_, Feb 06 2007