This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125779 #14 May 15 2022 13:34:20 %S A125779 83270,519370,939220,1844170,2263910,2293460,2429260,2595980,3133640, %T A125779 3216530,3474200,3559760,4787050,5306720,5505940,6238780,6889430, %U A125779 6932770,7320160,8286340,8427880,8744290,8961590,9863440,10871530 %N A125779 Numbers n such that n^4 + 1, n^4 + 3, n^4 + 7 and n^4 + 9 are all prime. %C A125779 Schinzel proved in 1958 that the set of primes of kind n^(2^k) + 1, n^(2^k) + 3, n^(2^k) + 7 and n^(2^k) + 9 is infinite for each number k > 0. %D A125779 Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42. %H A125779 Robert Israel, <a href="/A125779/b125779.txt">Table of n, a(n) for n = 1..500</a> %p A125779 R:= NULL: count:= 0: %p A125779 for k from 0 while count < 30 do %p A125779 for i in [20,30,40,50] do %p A125779 n:= 70*k + i; %p A125779 if isprime(n^4+1) and isprime(n^4+3) and isprime(n^4+7) and isprime(n^4+9) then %p A125779 count:= count+1; R:= R, n; %p A125779 fi %p A125779 od od: %p A125779 R; # _Robert Israel_, Feb 11 2021 %t A125779 Select[Range[109*10^5],AllTrue[#^4+{1,3,7,9},PrimeQ]&] (* _Harvey P. Dale_, May 15 2022 *) %Y A125779 Cf. A057015, A125780. %K A125779 nonn %O A125779 1,1 %A A125779 _Artur Jasinski_, Dec 09 2006 %E A125779 Corrected and extended by _Donovan Johnson_, Apr 22 2008