This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125840 #9 Oct 24 2013 08:53:38 %S A125840 1123,21911,3116111,11413111,12111331,14111311,316111111,1111131821, %T A125840 11112119111,11161211111,111161111311,111211231111,1111112111191, %U A125840 2111191111111,11131211113111,21111121126111,31111127111111,111211151611111,111211222111123,121132111712111 %N A125840 Two-sided multiplicative pointer primes. %C A125840 Following the definition of multiplicative pointer primes (A089823), I call a prime p a two-sided multiplicative pointer prime if previous_prime(p)=p-P and next_prime(p)=p+P where P is the product of the digits of p. %H A125840 Giovanni Resta, <a href="/A125840/b125840.txt">Table of n, a(n) for n = 1..59</a> (terms < 10^19) %H A125840 Carlos Rivera and Joseph L. Pe, <a href="http://www.primepuzzles.net/puzzles/puzz_251.htm">Pointer primes</a>. %e A125840 11112119111 is in the sequence because previous_prime(11112119111) %e A125840 = 11112119111 - 1*1*1*1*2*1*1*9*1*1*1 and next_prime(11112119111) %e A125840 = 11112119111 + 1*1*1*1*2*1*1*9*1*1*1. %t A125840 Do[p=Prime[m];P=Apply[Times,IntegerDigits[p]];If[Prime[m-1]== p-P&&Prime[m+1]==p+P,Print[p]],{m,2,140000000}] %Y A125840 Cf. A089823, A125841, A127836. %K A125840 hard,base,nonn %O A125840 1,1 %A A125840 _Farideh Firoozbakht_, Feb 02 2007 %E A125840 a(9)-a(20) from _Donovan Johnson_, Oct 21 2013