A125904 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks at least one of the digits 1,2,3,4 and at least one of the digits 5,6,7,8,9.
10, 100, 1000, 9976, 98920, 971440, 9420400, 90005176, 846101080, 7822770880, 71163913600, 637585923976, 5633160763240, 49148451899920, 424055315011600, 3623013325068376, 30689130457473400, 258015134469182560, 2155143129458730400
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
Crossrefs
Cf. A125630.
Programs
-
Maple
f:=n->20*8^n-70*7^n+120*6^n-125*5^n+84*4^n-36*3^n+9*2^n-1;
-
PARI
vector(100, n, 20*8^n-70*7^n+120*6^n-125*5^n+84*4^n-36*3^n+9*2^n-1) \\ Colin Barker, Feb 23 2015
Formula
a(n) = 20*8^n-70*7^n+120*6^n-125*5^n+84*4^n-36*3^n+9*2^n-1.
G.f.: -2*x*(20160*x^7 -54792*x^6 +53362*x^5 -28337*x^4 +8392*x^3 -1430*x^2 +130*x -5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)). - Colin Barker, Feb 23 2015