cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125907 Numbers k such that k divides 2^4 + 3^4 + 5^4 + ... + prime(k)^4.

This page as a plain text file.
%I A125907 #38 Nov 19 2024 22:12:02
%S A125907 1,2951,38266951,3053263643573,3798632877308897
%N A125907 Numbers k such that k divides 2^4 + 3^4 + 5^4 + ... + prime(k)^4.
%C A125907 No more terms to 10^13. - _Charles R Greathouse IV_, Mar 21 2011
%C A125907 a(4) is less than 10^13 contradicting the previous comment. It was found using the primesieve library by Kim Walisch and gmplib. - _Bruce Garner_, Feb 26 2021
%C A125907 a(6) > 4*10^15. - _Paul W. Dyson_, Nov 19 2024
%H A125907 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>.
%t A125907 a(1) = 1; s = 2^4; Do[s = s + Prime[2n]^4+Prime[2n+1]^4; If[ Mod[s, 2n+1] == 0, Print[2n+1]], {n,1, 20000000}]
%o A125907 (PARI) s=0; n=0; forprime(p=2, 4e9, s+=p^4; if(s%n++==0, print1(n", "))) \\ _Charles R Greathouse IV_, Mar 21 2011
%Y A125907 Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
%Y A125907 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.
%Y A125907 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.
%Y A125907 Cf. A122102, A232869, A128168, A233893.
%K A125907 bref,hard,more,nonn
%O A125907 1,2
%A A125907 _Alexander Adamchuk_, Feb 04 2007
%E A125907 a(4) from _Bruce Garner_, Feb 26 2021
%E A125907 a(5) from _Paul W. Dyson_, May 09 2024