A125947 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3,4,5 and at least one of digits 6,7,8,9.
9, 81, 729, 6513, 57369, 495921, 4194969, 34689393, 280607769, 2224214961, 17313344409, 132651929073, 1002605145369, 7490229758001, 55407572177049, 406450276733553, 2960529995462169, 21435301615525041, 154414691892116889, 1107604165960750833
Offset: 1
Examples
a(8) = 34689393.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
Crossrefs
Cf. A125630.
Programs
-
Maple
f:=n->16*7^n-48*6^n+68*5^n-56*4^n+28*3^n-8*2^n+1;
-
Mathematica
Table[ 16*7^n-48*6^n+68*5^n-56*4^n+28*3^n-8*2^n+1, {n, 20}] (* James C. McMahon, Dec 23 2024 *)
-
PARI
Vec(-3*x*(1680*x^6 -3988*x^5 +3968*x^4 -1819*x^3 +453*x^2-57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ Colin Barker, Feb 22 2015
Formula
a(n) = 16*7^n-48*6^n+68*5^n-56*4^n+28*3^n-8*2^n+1.
G.f.: -3*x*(1680*x^6 -3988*x^5 +3968*x^4 -1819*x^3 +453*x^2-57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Feb 22 2015