A125948 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks at least one of digits 1,2,3, at least one of digits 4,5,6 and at least one of digits 7,8,9.
10, 100, 982, 9388, 86950, 778780, 6748822, 56713708, 463661830, 3700940860, 28941318262, 222422713228, 1684544507110, 12602134130140, 93308618633302, 684912371803948, 4990975002030790, 36147245625290620, 260449744313893942
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
Crossrefs
Cf. A125630.
Programs
-
Maple
f:=n->27*7^n-81*6^n+108*5^n-81*4^n+36*3^n-9*2^n+1;
-
Mathematica
Table[27*7^n-81*6^n+108*5^n-81*4^n+36*3^n-9*2^n+1,{n,19}] (* James C. McMahon, Dec 23 2024 *)
-
PARI
vector(100, n, 27*7^n-81*6^n+108*5^n-81*4^n+36*3^n-9*2^n+1) \\ Colin Barker, Feb 23 2015
Formula
a(n) = 27*7^n-81*6^n+108*5^n-81*4^n+36*3^n-9*2^n+1.
G.f.: -2*x*(2520*x^6 -6012*x^5 +5990*x^4 -2754*x^3 +701*x^2 -90*x +5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Feb 23 2015