This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126063 #28 Nov 16 2022 04:36:25 %S A126063 1,1,2,3,6,4,15,30,20,8,105,210,140,56,16,945,1890,1260,504,144,32, %T A126063 10395,20790,13860,5544,1584,352,64,135135,270270,180180,72072,20592, %U A126063 4576,832,128,2027025,4054050,2702700,1081080,308880,68640,12480,1920,256 %N A126063 Triangle read by rows: see A128196 for definition. %H A126063 Ivan Neretin, <a href="/A126063/b126063.txt">Rows n = 0..100, flattened</a> %H A126063 P. Luschny, <a href="http://www.luschny.de/math/seq/variations.html">Variants of Variations</a>. %F A126063 Let H be the diagonal matrix diag(1,2,4,8,...) and %F A126063 let G be the matrix (n!! defined as A001147(n), -1!! = 1): %F A126063 (-1)!!/(-1)!! %F A126063 1!!/(-1)!! 1!!/1!! %F A126063 3!!/(-1)!! 3!!/1!! 3!!/3!! %F A126063 5!!/(-1)!! 5!!/1!! 5!!/3!! 5!!/5!! %F A126063 ... %F A126063 Then T = G*H. [Gottfried Helms] %F A126063 T(n,k) = 2^k*(2n - 1)!!/(2k - 1)!!. - _Ivan Neretin_, May 13 2015 %e A126063 Triangle begins: %e A126063 1 %e A126063 1, 2 %e A126063 3, 6, 4 %e A126063 15, 30, 20, 8 %e A126063 105, 210, 140, 56, 16 %e A126063 945, 1890, 1260, 504, 144, 32 %e A126063 10395, 20790, 13860, 5544, 1584, 352, 64 %e A126063 135135, 270270, 180180, 72072, 20592, 4576, 832, 128 %p A126063 A126063 := (n,k) -> 2^k*doublefactorial(2*n-1)/ doublefactorial(2*k-1); seq(print(seq(A126063(n,k),k=0..n)),n=0..7); # _Peter Luschny_, Dec 20 2012 %t A126063 Flatten[Table[2^k (2n - 1)!!/(2k - 1)!!, {n, 0, 8}, {k, 0, n}]] (* _Ivan Neretin_, May 11 2015 *) %Y A126063 First column is A001147, second column is A097801. %Y A126063 The diagonal is A000079, the subdiagonal is A014480. %K A126063 nonn,tabl,easy %O A126063 0,3 %A A126063 _N. J. A. Sloane_, Feb 28 2007