This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126099 #9 Sep 18 2019 21:33:37 %S A126099 1,1,1,2,6,21,7,10,10,15,15,21,21,28,28,36,36,45,45,55,55,66,66,78,78, %T A126099 91,91,105,105,120,120,136,136,153,153,171,171,190,190,210,210,231, %U A126099 231,253,253,276,276,300,300,325,325,351,351,378,378,406,406,435,435,465,465,496 %N A126099 Number of 3-indecomposable (connected) graphs on n nodes. %C A126099 See A124593 for definition. %H A126099 Colin Barker, <a href="/A126099/b126099.txt">Table of n, a(n) for n = 1..1000</a> %H A126099 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A126099 G.f.: x/((1-x)*(1-x^2)^2) + 1 - x^3 + 3*x^4 + 15*x^5 + x^6. %F A126099 From _Colin Barker_, May 27 2016: (Start) %F A126099 a(n) = (-1+(-1)^n+2*(1+(-1)^n)*n+2*n^2)/16 for n>7. %F A126099 a(n) = (n^2+2*n)/8 for n>7 and even. %F A126099 a(n) = (n^2-1)/8 for n>7 and odd. %F A126099 a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>12. %F A126099 G.f.: x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2). %F A126099 (End) %t A126099 LinearRecurrence[{1,2,-2,-1,1},{1,1,1,2,6,21,7,10,10,15,15,21,21},70] (* _Harvey P. Dale_, Sep 18 2019 *) %o A126099 (PARI) Vec(x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2) + O(x^50)) \\ _Colin Barker_, May 27 2016 %Y A126099 Cf. A128526, A128527, A128528. %K A126099 nonn,easy %O A126099 1,4 %A A126099 _David Applegate_ and _N. J. A. Sloane_, Mar 05 2007