A126127 Inverse square of A061554.
1, -2, 1, -1, -2, 1, 5, -3, -2, 1, 2, 9, -5, -2, 1, -13, 9, 13, -7, -2, 1, -5, -33, 20, 17, -9, -2, 1, 34, -27, -61, 35, 21, -11, -2, 1, 13, 111, -73, -97, 54, 25, -13, -2, 1, -89, 80, 248, -151, -141, 77, 29, -15, -2, 1, -34, -355, 252, 461, -269, -193, 104, 33, -17, -2, 1
Offset: 0
Examples
First few rows of the triangle are: 1; -2, 1; -1, -2, 1; 5, -3, -2, 1; 2, 9, -5, -2, 1; -13, 9, 13, -7, -2, 1; ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10009 (rows 0 to 140, flattened)
Programs
-
Maple
T:= Matrix(20,20,(n,k) -> binomial(n-1, floor((n)/2 - (-1)^(n-k)*(k)/2)), shape=triangular[lower]): A:= T^(-2): seq(seq(A[i,k],k=1..i),i=1..20); # Robert Israel, Jul 07 2019
Formula
G.f. as triangle (conjectured): (1-x)*(1-x+x^2)/(1-x*y+3*x^2-x^3*y+x^4). - Robert Israel, Jul 07 2019
Comments