cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126131 a(n) = number of divisors of n which equal any d(k) for 1 <= k <= n, where d(k) is the number of positive divisors of k.

This page as a plain text file.
%I A126131 #16 Oct 11 2017 09:17:02
%S A126131 1,2,1,2,1,3,1,3,2,2,1,5,1,2,2,3,1,4,1,4,2,2,1,6,2,2,2,3,1,5,1,4,2,2,
%T A126131 2,6,1,2,2,5,1,4,1,3,4,2,1,6,1,4,2,3,1,5,2,4,2,2,1,8,1,2,3,4,2,4,1,3,
%U A126131 2,5,1,8,1,2,3,3,2,4,1,6,3,2,1,7,2,2,2,4,1,7,2,3,2,2,2,7,1,3,3,5,1,4,1,4,4
%N A126131 a(n) = number of divisors of n which equal any d(k) for 1 <= k <= n, where d(k) is the number of positive divisors of k.
%H A126131 Michael De Vlieger, <a href="/A126131/b126131.txt">Table of n, a(n) for n = 1..10000</a>
%e A126131 The number of divisors of the integers 1 through 10 form the sequence 1,2,2,3,2,4,2,4,3,4. The divisors of 10 are 1,2,5,10. The divisors of 10 which occur in the sequence of d(k)'s, 1 <= k <= 10, are 1 and 2. So a(10) = 2.
%e A126131 From _Michael De Vlieger_, Oct 10 2017: (Start)
%e A126131 Records and their indices in a(n).
%e A126131 i = index in table
%e A126131 n = index of record r in this sequence
%e A126131 k = index of n in A002182.
%e A126131 MN(n) = rev(A054841(n)) = concatenation of multiplicities of
%e A126131         prime divisors of n, e.g., MN(60) = "211".
%e A126131 r = record in this sequence.
%e A126131 .
%e A126131    i       n    k   MN(n)   r
%e A126131   ----------------------------
%e A126131    1       1    1   0       1
%e A126131    2       2    2   1       2
%e A126131    3       6    4   11      3
%e A126131    4      12    5   21      5
%e A126131    5      24    6   31      6
%e A126131    6      60    9   211     8
%e A126131    7     120   10   311     9
%e A126131    8     180   11   221    11
%e A126131    9     240   12   411    12
%e A126131   10     360   13   321    14
%e A126131   11     720   14   421    16
%e A126131   12    1260   16   2211   18
%e A126131   13    1680   17   4111   19
%e A126131   14    2520   18   3211   21
%e A126131   15    3360        5111   22
%e A126131   16    5040   19   4211   26
%e A126131   17    7560   20   3311   28
%e A126131   18   10080   21   5211   30
%e A126131   19   15120   22   4311   33
%e A126131   20   20160   23   6211   34
%e A126131   21   25200   24   4221   35
%e A126131   22   30240        5311   38
%e A126131   23   50400   27   5221   40
%e A126131   24   60480        6311   42
%e A126131   25   75600        4321   43
%e A126131   (End)
%t A126131 f[n_] :=Length@ Select[Divisors[n], MemberQ[Table[Length@ Divisors[k], {k, n}], # ] &];Table[f[n], {n, 105}] (* _Ray Chandler_, Dec 20 2006 *)
%t A126131 Block[{nn = 105, s}, s = DivisorSigma[0, Range@ nn]; Table[DivisorSum[n, 1 &, MemberQ[Take[s, n], #] &], {n, nn}]] (* _Michael De Vlieger_, Oct 10 2017 *)
%o A126131 (PARI) a(n) = #setintersect(divisors(n), Set(vector(n, k, numdiv(k)))); \\ _Michel Marcus_, Oct 11 2017
%Y A126131 Cf. A126132.
%K A126131 nonn
%O A126131 1,2
%A A126131 _Leroy Quet_, Dec 18 2006
%E A126131 Extended by _Ray Chandler_, Dec 20 2006