This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126131 #16 Oct 11 2017 09:17:02 %S A126131 1,2,1,2,1,3,1,3,2,2,1,5,1,2,2,3,1,4,1,4,2,2,1,6,2,2,2,3,1,5,1,4,2,2, %T A126131 2,6,1,2,2,5,1,4,1,3,4,2,1,6,1,4,2,3,1,5,2,4,2,2,1,8,1,2,3,4,2,4,1,3, %U A126131 2,5,1,8,1,2,3,3,2,4,1,6,3,2,1,7,2,2,2,4,1,7,2,3,2,2,2,7,1,3,3,5,1,4,1,4,4 %N A126131 a(n) = number of divisors of n which equal any d(k) for 1 <= k <= n, where d(k) is the number of positive divisors of k. %H A126131 Michael De Vlieger, <a href="/A126131/b126131.txt">Table of n, a(n) for n = 1..10000</a> %e A126131 The number of divisors of the integers 1 through 10 form the sequence 1,2,2,3,2,4,2,4,3,4. The divisors of 10 are 1,2,5,10. The divisors of 10 which occur in the sequence of d(k)'s, 1 <= k <= 10, are 1 and 2. So a(10) = 2. %e A126131 From _Michael De Vlieger_, Oct 10 2017: (Start) %e A126131 Records and their indices in a(n). %e A126131 i = index in table %e A126131 n = index of record r in this sequence %e A126131 k = index of n in A002182. %e A126131 MN(n) = rev(A054841(n)) = concatenation of multiplicities of %e A126131 prime divisors of n, e.g., MN(60) = "211". %e A126131 r = record in this sequence. %e A126131 . %e A126131 i n k MN(n) r %e A126131 ---------------------------- %e A126131 1 1 1 0 1 %e A126131 2 2 2 1 2 %e A126131 3 6 4 11 3 %e A126131 4 12 5 21 5 %e A126131 5 24 6 31 6 %e A126131 6 60 9 211 8 %e A126131 7 120 10 311 9 %e A126131 8 180 11 221 11 %e A126131 9 240 12 411 12 %e A126131 10 360 13 321 14 %e A126131 11 720 14 421 16 %e A126131 12 1260 16 2211 18 %e A126131 13 1680 17 4111 19 %e A126131 14 2520 18 3211 21 %e A126131 15 3360 5111 22 %e A126131 16 5040 19 4211 26 %e A126131 17 7560 20 3311 28 %e A126131 18 10080 21 5211 30 %e A126131 19 15120 22 4311 33 %e A126131 20 20160 23 6211 34 %e A126131 21 25200 24 4221 35 %e A126131 22 30240 5311 38 %e A126131 23 50400 27 5221 40 %e A126131 24 60480 6311 42 %e A126131 25 75600 4321 43 %e A126131 (End) %t A126131 f[n_] :=Length@ Select[Divisors[n], MemberQ[Table[Length@ Divisors[k], {k, n}], # ] &];Table[f[n], {n, 105}] (* _Ray Chandler_, Dec 20 2006 *) %t A126131 Block[{nn = 105, s}, s = DivisorSigma[0, Range@ nn]; Table[DivisorSum[n, 1 &, MemberQ[Take[s, n], #] &], {n, nn}]] (* _Michael De Vlieger_, Oct 10 2017 *) %o A126131 (PARI) a(n) = #setintersect(divisors(n), Set(vector(n, k, numdiv(k)))); \\ _Michel Marcus_, Oct 11 2017 %Y A126131 Cf. A126132. %K A126131 nonn %O A126131 1,2 %A A126131 _Leroy Quet_, Dec 18 2006 %E A126131 Extended by _Ray Chandler_, Dec 20 2006