This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126150 #14 Feb 03 2025 13:45:18 %S A126150 1,1,4,1,6,24,36,24,6,96,384,636,744,636,384,96,2976,11904,20256, %T A126150 26304,28536,26304,20256,11904,2976,151416,605664,1042056,1407024, %U A126150 1650456,1736064,1650456,1407024,1042056,605664,151416,11449296,45797184 %N A126150 Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 4 times first term. %F A126150 Sum_{k=0..2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n. %e A126150 Triangle begins: %e A126150 1; %e A126150 1, 4, 1; %e A126150 6, 24, 36, 24, 6; %e A126150 96, 384, 636, 744, 636, 384, 96; %e A126150 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976; %e A126150 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ... %e A126150 If we write the triangle like this: %e A126150 .......................... ....1; %e A126150 ................... ....1, ....4, ....1; %e A126150 ............ ....6, ...24, ...36, ...24, ....6; %e A126150 ..... ...96, ..384, ..636, ..744, ..636, ..384, ...96; %e A126150 .2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976; %e A126150 then the first term in each row is the sum of the previous row: %e A126150 2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96 %e A126150 the next term is 4 times the first: %e A126150 11904 = 4*2976, %e A126150 and the remaining terms in each row are obtained by the rule illustrated by: %e A126150 20256 = 2*11904 - 2976 - 6*96; %e A126150 26304 = 2*20256 - 11904 - 6*384; %e A126150 28536 = 2*26304 - 20256 - 6*636; %e A126150 26304 = 2*28536 - 26304 - 6*744; %e A126150 20256 = 2*26304 - 28536 - 6*636; %e A126150 11904 = 2*20256 - 26304 - 6*384; %e A126150 2976 = 2*11904 - 20256 - 6*96. %e A126150 An alternate recurrence is illustrated by: %e A126150 11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96); %e A126150 20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384); %e A126150 26304 = 20256 + 3*(636 + 744 + 636); %e A126150 28536 = 26304 + 3*(744); %e A126150 and then for k>n, T(n,k) = T(n,2n-k). %o A126150 (PARI) T(n,k)=local(p=3);if(2*n<k || k<0,0,if(n==0 && k==0,1,if(k==0,sum(j=0,2*n-2,T(n-1,j)), if(k==1,(p+1)*T(n,0),if(k<=n,2*T(n,k-1)-T(n,k-2)-2*p*T(n-1,k-2),T(n,2*n-k)))))) %o A126150 (PARI) /* Alternate Recurrence: */ T(n,k)=local(p=3);if(2*n<k || k<0,0,if(n==0 && k==0,1,if(k==0,sum(j=0,2*n-2,T(n-1,j)), if(k<=n,T(n,k-1)+p*sum(j=k-1,2*n-1-k,T(n-1,j)),T(n,2*n-k))))) %Y A126150 Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155. %K A126150 nonn,tabl %O A126150 0,3 %A A126150 _Paul D. Hanna_, Dec 19 2006