cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126166 Larger member of each exponential amicable pair.

This page as a plain text file.
%I A126166 #16 May 09 2019 18:34:38
%S A126166 100548,502740,968436,1106028,1307124,1709316,2312604,2915892,3116988,
%T A126166 3720276,4122468,4323564,4725756,5027400,4842180,5329044,5530140,
%U A126166 5932332,6133428,6535620,6736716,7138908,7340004,7943292,8345484,8546580,8948772,9753156,10155348
%N A126166 Larger member of each exponential amicable pair.
%C A126166 This sequence includes the largest member of all exponential amicable pairs and does not discriminate between primitive and nonprimitive pairs.
%D A126166 Hagis, Peter Jr.; Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
%H A126166 Amiram Eldar, <a href="/A126166/b126166.txt">Table of n, a(n) for n = 1..10000</a>
%H A126166 Peter Hagis, Jr., <a href="http://dx.doi.org/10.1155/S0161171288000407">Some results concerning exponential divisors</a>, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
%H A126166 Ant King, <a href="/A126164/a126164.pdf">Mathematica programs for A126164 - A126166</a>
%H A126166 David Moews, <a href="http://djm.cc/amicable.html">Perfect, amicable and sociable numbers</a>.
%H A126166 J. M. Pedersen, <a href="http://amicable.homepage.dk/knwne2.htm">Known exponential amicable pairs</a>.
%F A126166 The values of n for which esigma(m)=esigma(n)=m+n and m<n, where esigma is defined in A051377
%e A126166 a(3)= 968436 because (937692,968436) is the third exponential amicable pair
%t A126166 fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; s = {}; Do[m = esigma[n] - n; If[m > n && esigma[m] - m == n, AppendTo[s, m]], {n, 1, 10^7}]; s (* _Amiram Eldar_, May 09 2019 *)
%Y A126166 Cf. A126165, A051377, A054979, A049419, A054980, A126164.
%K A126166 nonn
%O A126166 1,1
%A A126166 _Ant King_, Dec 21 2006
%E A126166 Link corrected and reference added by _Andrew Lelechenko_, Dec 04 2011
%E A126166 More terms from _Amiram Eldar_, May 09 2019