cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A323753 Lesser member of primitive exponential amicable pairs.

Original entry on oeis.org

90972, 937692, 4548600, 44030448, 46884600, 453842928, 712931184, 906494400, 20907057600, 34793179200, 47646797328, 53469838800, 240707724300
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

Exponential amicable pair (m,n) is primitive if there is no prime number that is a unitary divisor of both m and n. All the other amicable pairs can be generated from primitive pairs by multiplying them with a squarefree integer coprime to each of the members of the pair. Hagis found the first 6 terms in 1988. Pedersen found the next 7 terms in 1999.
a(14) <= 588330137304.
The larger counterparts are in A323754.

Examples

			(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, n]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)

A323754 Larger member of primitive exponential amicable pairs.

Original entry on oeis.org

100548, 968436, 5027400, 48665232, 48421800, 468723024, 845775504, 938024640, 26989110720, 40792003200, 48200025744, 63433162800, 303008547060
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

The lesser counterparts are in A323753.
a(14) <= 647935817256.

Examples

			(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, m]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)
Showing 1-2 of 2 results.