This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126175 #18 Jan 22 2019 08:15:45 %S A126175 1483785,2479065,2580105,4895241,7336455,9100905,10350345,16367481, %T A126175 17307105,24829945,15706090,27866241,15439545,23872185,53763535, %U A126175 63075321,41337555,60923577,51394665,56802249,110691295,73809496,89870985,82771336,92586585,150672921,108212055 %N A126175 Larger member of an augmented infinitary amicable pair. %C A126175 A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y. %H A126175 Amiram Eldar, <a href="/A126175/b126175.txt">Table of n, a(n) for n = 1..276</a> %H A126175 Jan Munch Pedersen, <a href="http://62.198.248.44/aliquot/tables.htm">Tables of Aliquot Cycles</a>. %F A126175 The values of n for which isigma(m)=isigma(n)=m+n-1, where n>m and isigma(n) is given by A049417(n). %e A126175 a(3)=2580105 because 2580105 is the larger member of the third augmented infinitary amicable pair, (2166136,2580105). %t A126175 ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], _?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k_] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[Last[data[[k]]], {k, 1, Length[data]}] %t A126175 fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, k]], {n, 2, 10^9}]; s (* _Amiram Eldar_, Jan 20 2019 *) %Y A126175 Cf. A126169, A049417, A126168, A037445, A126170, A126171, A126173, A126174, A126176. %K A126175 hard,nonn %O A126175 1,1 %A A126175 _Ant King_, Dec 23 2006 %E A126175 a(9)-a(27) from _Amiram Eldar_, Jan 20 2019