A126178 Triangle read by rows: T(n,k) is number of hex trees with n edges and k vertices of outdegree 1 (0<=k<=n).
1, 0, 3, 1, 0, 9, 0, 9, 0, 27, 2, 0, 54, 0, 81, 0, 30, 0, 270, 0, 243, 5, 0, 270, 0, 1215, 0, 729, 0, 105, 0, 1890, 0, 5103, 0, 2187, 14, 0, 1260, 0, 11340, 0, 20412, 0, 6561, 0, 378, 0, 11340, 0, 61236, 0, 78732, 0, 19683, 42, 0, 5670, 0, 85050, 0, 306180, 0, 295245, 0
Offset: 0
Examples
Triangle starts: 1; 0, 3; 1, 0, 9; 0, 9, 0, 27; 2, 0, 54, 0, 81;
Links
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Programs
-
Maple
T:=proc(n,k) if n-k mod 2 = 0 then 3^k*binomial(n+1,k)*binomial(n+1-k,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
Formula
T(n,k) = [3^k/(n+1)]binomial(n+1,k)*binomial(n+1-k,(n-k)/2) (0<=k<=n).
G.f.: G=G(t,z) satisfies G=1+3tzG+z^2*G^2.
Comments