A126181 Triangle read by rows, T(n,k) = C(n,k)*Catalan(n-k+1), n >= 0, 0 <= k <= n.
1, 2, 1, 5, 4, 1, 14, 15, 6, 1, 42, 56, 30, 8, 1, 132, 210, 140, 50, 10, 1, 429, 792, 630, 280, 75, 12, 1, 1430, 3003, 2772, 1470, 490, 105, 14, 1, 4862, 11440, 12012, 7392, 2940, 784, 140, 16, 1, 16796, 43758, 51480, 36036, 16632, 5292, 1176, 180, 18, 1, 58786
Offset: 0
Examples
Triangle starts: 1; 2, 1; 5, 4, 1; 14, 15, 6, 1; 42, 56, 30, 8, 1;
Links
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Programs
-
Maple
c:=n->binomial(2*n,n)/(n+1): T:=proc(n,k) if k<=n then binomial(n,k)*c(n-k+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form # Second implementation: h := n -> simplify(hypergeom([3/2,-n],[3],-x)): T := (n,k) -> 4^(n-k)*coeff(h(n), x, n-k): seq(print(seq(T(n,k), k=0..n)), n=0..9); # Peter Luschny, Feb 04 2015
-
Mathematica
T[n_, k_] := Binomial[n, k]*CatalanNumber[n-k+1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
Formula
T(n,k) = binomial(n,k)*c(n-k+1), where c(m) = binomial(2m,m)/(m+1) is a Catalan number (A000108). Proof: There are c(n-k+1) binary trees with n-k edges. We can insert k vertical edges at the n-k+1 vertices (repetitions possible) in binomial(n-k+1+k-1,k) = binomial(n,k) ways.
G.f.: G = G(t,z) satisfies G = 1 + (2+t)*z*G + z^2*G^2.
Sum of terms in row n is A002212(n+1).
T(n,0) = A000108(n+1) (the Catalan numbers).
Sum_{k=0..n} k*T(n,k) = A026376(n) for n >= 1.
1/(1 - xy - 2x - x^2/(1 - xy - 2x - x^2/(1 - xy - 2x - x^2/(1 - xy - 2x - x^2/(1 - ... (continued fraction). - Paul Barry, Jan 28 2009
T(n,k) = 4^(n-k)*[x^(n-k)]hypergeom([3/2,-n],[3],-x). - Peter Luschny, Feb 04 2015
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 13 2007
Edited and previous name moved to comments by Peter Luschny, Feb 03 2015
Comments