A126186 Triangle read by rows: T(n,k) is number of hex trees with n edges and level of first leaf (in the preorder traversal) equal to k (1 <= k <= n).
3, 1, 9, 3, 6, 27, 10, 19, 27, 81, 36, 66, 90, 108, 243, 137, 245, 325, 378, 405, 729, 543, 954, 1242, 1416, 1485, 1458, 2187, 2219, 3848, 4944, 5563, 5760, 5589, 5103, 6561, 9285, 15942, 20286, 22620, 23235, 22410, 20412, 17496, 19683, 39587, 67442, 85194
Offset: 1
Examples
Triangle starts: 3; 1, 9; 3, 6, 27; 10, 19, 27, 81; 36, 66, 90, 108, 243;
Links
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Programs
-
Maple
G:=2/(2-t-3*t*z+t*sqrt(1-6*z+5*z^2))-1: Gser:=simplify(series(G,z=0,14)): for n from 1 to 10 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 10 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form
-
Mathematica
n = 10; g[t_, z_] = 2/(2 - t - 3t*z + t*Sqrt[1 - 6z + 5z^2]) - 1; Flatten[ Rest[ CoefficientList[#, t]] & /@ Rest[ CoefficientList[ Series[g[t, z], {z, 0, n}], z]]] (* Jean-François Alcover, Jul 22 2011, after g.f. *)
Comments