A126188 Triangle read by rows: T(n,k) is the number of hex trees with n edges and k pairs of adjacent vertices of outdegree 2.
1, 3, 10, 36, 135, 2, 519, 24, 2034, 180, 5, 8100, 1110, 75, 32688, 6210, 675, 14, 133380, 32886, 4851, 252, 549342, 168210, 30996, 2646, 42, 2280690, 840132, 184842, 21672, 882, 9534591, 4124682, 1053486, 154980, 10584, 132, 40103019
Offset: 0
Examples
Triangle starts: 1; 3; 10; 36; 135, 2; 519, 24; 2034, 180, 5; 8100, 1110, 75;
Links
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Programs
-
Maple
G:=1/2*(12*z^3*t+2*z^2*t^2-2*z^2*t-6*z^3*t^2-3*z-6*z^3+1-sqrt(1+9*z^2-4*z^2*t-6*z+12*z^3*t-12*z^3))/z^2/(3*z*t-t-3*z)^2: Gser:=simplify(series(G,z=0,18)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: 1;3;for n from 2 to 14 do seq(coeff(P[n],t,j),j=0..floor(n/2)-1) od;
-
Mathematica
g[t_,z_] = G /. Solve[G == 1 + 3z*G + z^2*(1 + 3z*G + t*(G - 1 - 3z*G))^2, G][[1]]; Flatten[ CoefficientList[ CoefficientList[ Series[g[t,z], {z,0,13}], z], t]][[1 ;; 39]] (* Jean-François Alcover, May 27 2011, after g.f. *)
Formula
G.f.: G = G(t,z) = 1+3*z*G+z^2*(1+3*z*G+t*(G-1-3*z*G))^2 (explicit expression in the Maple program).
Comments