cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126218 Triangle read by rows: T(n,k) is the number of 0-1-2 trees (i.e., ordered trees with all vertices of outdegree at most two) with n edges and k pairs of adjacent vertices of outdegree 2.

Original entry on oeis.org

1, 1, 2, 4, 7, 2, 13, 8, 26, 20, 5, 52, 50, 25, 104, 130, 75, 14, 212, 322, 217, 84, 438, 770, 644, 294, 42, 910, 1836, 1806, 952, 294, 1903, 4362, 4830, 3108, 1176, 132, 4009, 10268, 12738, 9576, 4188, 1056, 8494, 24032, 33219, 27948, 14760, 4752, 429, 18080
Offset: 0

Views

Author

Emeric Deutsch, Dec 24 2006

Keywords

Comments

Row n has floor(n/2) terms (n >= 2).
Row sums are the Motzkin numbers (A001006).
T(n,1) = A023431(n+1).
Sum_{k=0..floor(n/2)-1} k*T(n,k) = 2*A014532(n-3) (n >= 4).

Examples

			Triangle starts:
   1;
   1;
   2;
   4;
   7,  2;
  13,  8;
  26, 20,  5;
  52, 50, 25;
		

Crossrefs

Programs

  • Maple
    G:=1/2*(2*z^2*t^2-z+4*z^3*t-2*z^3*t^2-2*z^2*t-2*z^3+1-sqrt(1+4*z^3*t-4*z^2*t+z^2-2*z-4*z^3))/z^2/(z*t-t-z)^2: Gser:=simplify(series(G,z=0,18)): for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od: 1;1; for n from 2 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/2)-1) od; # yields sequence in triangular form

Formula

G.f.: G = G(t,z) satisfies G = 1 + zG + z^2*(1 + zG + t(G-1-zG))^2 (see the Maple program for the explicit expression).