cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126221 a(n)=c(n)+c(n-1)+2*c(n-2)+4*c(n-3)+8*c(n-4)+...+2^(n-2)*c(1)+2^(n-1)*c(0), where c(k) are the Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 5, 13, 35, 98, 286, 869, 2739, 8910, 29754, 101498, 352222, 1239332, 4410204, 15840813, 57344451, 208976022, 765945954, 2821516398, 10439890026, 38781926652, 144580149924, 540737349858, 2028319233390, 7628680720908
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2006

Keywords

Comments

Row sums of A125177.
Equals the eigensequence of a triangle with A000108 as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010

Examples

			a(4)=35 because c(4)+c(3)+2*c(2)+4*c(1)+8*c(0) = 14+5+2*2+4*1+8*1 = 35.
		

Crossrefs

Cf. A125177.

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1): a:=n->c(n)+sum(2^(n-j-1)*c(j),j=0..n-1): seq(a(n),n=0..30);

Formula

G.f.: (1-x)*(1-sqrt(1-4*x)) / (2*x*(1-2*x)).
D-finite with recurrence (n+1)*a(n) +(-7*n+1)*a(n-1) +2*(7*n-8)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 22 2022