A126221 a(n)=c(n)+c(n-1)+2*c(n-2)+4*c(n-3)+8*c(n-4)+...+2^(n-2)*c(1)+2^(n-1)*c(0), where c(k) are the Catalan numbers (A000108).
1, 2, 5, 13, 35, 98, 286, 869, 2739, 8910, 29754, 101498, 352222, 1239332, 4410204, 15840813, 57344451, 208976022, 765945954, 2821516398, 10439890026, 38781926652, 144580149924, 540737349858, 2028319233390, 7628680720908
Offset: 0
Keywords
Examples
a(4)=35 because c(4)+c(3)+2*c(2)+4*c(1)+8*c(0) = 14+5+2*2+4*1+8*1 = 35.
Crossrefs
Cf. A125177.
Programs
-
Maple
c:=n->binomial(2*n,n)/(n+1): a:=n->c(n)+sum(2^(n-j-1)*c(j),j=0..n-1): seq(a(n),n=0..30);
Formula
G.f.: (1-x)*(1-sqrt(1-4*x)) / (2*x*(1-2*x)).
D-finite with recurrence (n+1)*a(n) +(-7*n+1)*a(n-1) +2*(7*n-8)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 22 2022
Comments