A126235 Minimum length of a codeword in Huffman encoding of n symbols, where the k-th symbol has frequency k.
1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 2
Keywords
Examples
A Huffman code for n=8 is (1->00000, 2->00001, 3->0001, 4->001, 5->010, 6->011, 7->10, 8->11). The shortest codewords have length a(8)=2.
Links
- M. J. Fisher et al., The birank number of a graph, Congressus Numerant., 204 (2010), 173-180.
- Wikipedia, Huffman coding
Formula
Conjecture: a(n) = A099396(n+1) = floor(log_2(2(n+1)/3)). Equivalently, a(n) = a(n-1) + 1 if n has the form 3*2^k-1, a(n) = a(n-1) otherwise. This is true at least for n up to 1000.