cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126236 Maximum length of a codeword in Huffman encoding of n symbols, where the k-th symbol has frequency k.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 2

Views

Author

Dean Hickerson, Dec 21 2006

Keywords

Examples

			A Huffman code for n=8 is (1->00000, 2->00001, 3->0001, 4->001, 5->010, 6->011, 7->10, 8->11). The longest codewords have length a(8)=5.
		

Crossrefs

Cf. A126014 and A126237. The minimum length of a codeword is in A126235.

Formula

Conjecture: a(n) = floor(log_2(n)) + floor(log_2(2n/3)). Equivalently, a(n) = a(n-1) + 1 if n has the form 2^k or 3*2^k, a(n) = a(n-1) otherwise. This is true at least for n up to 1000.