A126241
Dropping times in the 3n+1 problem (or the Collatz problem). Let T(n):=n/2 if n is even, (3n+1)/2 otherwise (A014682). Let a(n) be the smallest integer k such that T^(k)(n)
0, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 59, 1, 2, 1, 56, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 5, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 51, 1, 2, 1, 5, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 45, 1, 2, 1, 8, 1, 2, 1, 4
Offset: 1
Keywords
Examples
s(15) = 7, since the trajectory {T^(k)(15)} (k=1,2,3,...) equals 23,35,53,80,40,20,10.
References
- J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See p. 33.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. C. Lagarias, The 3x+1 Problem: An Annotated Bibliography (1963-1999), arXiv:math/0309224 [math.NT], 2003-2011.
- Olivier Rozier and Claude Terracol, Paradoxical behavior in Collatz sequences, arXiv:2502.00948 [math.GM], 2025. See p. 2.
- Riho Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976) 241-252, with definition 0.1 chi(n) = a(n).
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Mathematica
Collatz2[n_] := If[n<2, {}, Rest[NestWhileList[If[EvenQ[#], #/2, (3 # + 1)/2] &, n, # >= n &]]]; Table[Length[Collatz2[n]], {n, 1, 1000}]
Extensions
Broken link fixed by K. Spage, Oct 22 2009
Comments